
Institute of Computational Linguistics

Machine Translation

7 Neural Networks

Mathias Müller

 

How
EEocis

you



Last time



Topics of today

• Neural networks: feed-forward neural 
networks or “multi-layer perceptrons”

• Backpropagation

• Gradient Descent

FENN

MLP



Remember: logistic regression

training data on
ni f z

x y
I good

34 bad

awesome

b s

ofii D



Multi-class classification with linear models

trayningd no

I dog
0

E cat I
gt frog o

l



Multi-class classification with linear models

traxiningdatay W hay 25g

I dog

I cat

gt frog

vector with

probabilitydistribution
S WI



Softmax
dog E E

s E
cat 1 3

elk

w sax



Institute of Computational Linguistics

Feed-forward Neural Networks



Feed-forward neural networks

Are like logistic regression extended:
• multiple layers, each with its own 

weights

• the activation function does not have to 
be sigmoid



Why would we want to extend log reg?

• Linear models, can only solve linear 
problems

• Need more
complicated model
families



Nesting linear transformations

I WE

E UE
E U Way

I



FFNN structure, vector notation

• Several layers, each with their own 
weight matrix and activation function

I o E
sigmoid
rel u

E 9µF
tanh



How to understand drawings of FFNNs



Layers

• “hidden” layers,
• “deep” neural network 3 hidden



Activation functions (“non-linearities”)

• actually crucial for non-linear behaviour!
• applied element-wise

E o REW Max o x

REW



When to use which activation function

• hidden layer: always use RELU

• output layer:
• regression problem: identity function

• classification problem: softmax 
no function



Summary FFNN structure

• have several layers,
• a layer

• takes a vector as input
• computes a matrix-vector product with a 

weight matrix
• and applies an activation function 

element-wise
• output: a vector

a

WE

RELUCWE



Institute of Computational Linguistics

Learning optimal parameters

WU



How to learn optimal weights?

• define how to measure error, a loss 
function

• Two-step procedure:
• find partial derivative of a loss function 

with respect to each weight

• update each parameter using its partial 
derivative

backpropagation

gradient descent



Prerequisite: differentiability

• Entire computation must be smooth 
enough: differentiable or piece-wise 
differentiable an ax

CAD

r



Loss functions

• Our actual metric may not be 
differentiable, so we have to define a 
surrogate loss function

1arr m it

O l loss squared loss



Typical loss functions

• For regression: MSE

• For classification: cross-entropy

for any
vector
LG

for distributions



Mean squared error loss (MSE)

N

Fy Z correct y prediction
2

x y



Cross-entropy loss (CE)

predidias
truth

p l I 9 111

ECPA oh log Pk



Institute of Computational Linguistics

Reverse Differentiation:
Backpropagation



Backpropagation

• Want: influence of each parameter on 
current loss

• Writing out analytical gradient too 
complicated for nested functions

• Instead: staged computation by applying 
the chain rule of calculus

2L

Tw



Chain rule of calculus

d

y x

y 3 12
ddIy 2y 24ddI 24 3

z YZ dy
X 4 d

3



View FFNN as a computational graph

Wo 2.0

xo
to

w Zee

Wz 3.0

y woxotwnxntwzo GD n.ee Y
0.73



Backpropagation

What backpropagation sees:
• graph of nodes
• every node can perform forward pass 

and remember its inputs

• every node can perform backward pass 
and knows its local gradient

XZ 2X

output of n vi forward input

nw
n backward head gradient



Every node can perform forward pass and 
remember its inputs



Every node can perform backward pass and 
knows its local gradient



Computational graph view RULES

11 2 Hx Ix dfa 11 2

2.00 f x Ctx h
Wo Ix 2 o r

Xo
4 of

wn I to
x

0.20 o.o_ noo

in
4 2 100

backward



Computational graph view RULES
f G Ix dat 11 2

2.00 f x Ctx 1

wo.to i
Xo T 4.0

wn I to
0.20 o 20 0.53 o.gs 1 Oo

wz 3.0 MORE RULES0.20 df X
f x ex d

e

f x ax defy a



Backpropagation

• (receive some data (X, y))
• (forward pass: compute output)
• (compute loss)
• in reverse order, compute local gradient

and multiply with head gradient

f x ax defy a

2
Xn 3

xz I 3
2 3



Summary Backpropagation

• Compute partial derivatives of loss 
function with respect to all network 
parameters

• View FFNN as computational graph with 
operations

• Each operation must know how to do 
forward and backward passes



Institute of Computational Linguistics

Optimization: Gradient Descent



Gradient descent

• Purpose: given a forward and backward 
pass, find better parameters

• Iterative optimization algorithm



What gradient descent sees

list of weights

µy

list of gradient

TV

learning rate 0.0001



Gradient descent procedure
current new parameter
params

gradients

i i li p

0 0.01



Gradient descent in code



Gradient descent variants

• Batch gradient descent: estimate 
gradients once and compute 1 update 
using the entire training set

• Stochastic gradient descent: use one 
single training example for 1 update

• Minibatch stochastic gradient descent: 
use several examples for 1 updateSGD



Gradient descent hyperparameters

• Learning rate alpha
• Minibatch size
• How many updates

x

x y



Summary

• FFNNs consist of layers, each layer is a 
linear transformation followed by an 
activation function

• Backpropagation is used to obtain 
gradients of the loss function with respect 
to each parameter

• Gradient descent updates parameters 
iteratively, using previously computed 
gradients



Links / Further Reading (there are LOTS)

• cs231n specific lecture about FFNNs with Andrej Karpathy: 
https://www.youtube.com/watch?v=i94OvYb6noo&index=4&list=P
Lkt2uSq6rBVctENoVBg1TpCC7OQi31AlC

• Here is a neural network library written only in numpy:
https://github.com/bricksdont/selfnet

• Chris Olah’s blog post on backprop: 
http://colah.github.io/posts/2015-08-Backprop/

• “Deep Learning with Python” book by F. Chollet (on OLAT)
• “Deep Learning” book by Goodfellow et al (on OLAT)
• http://neuralnetworksanddeeplearning.com/ online book by 

Michael Nielsen
• Section 1 of Koehn’s draft of NMT Chapter (on OLAT)
• www.playground.tensorflow.org



Institute of Computational Linguistics

Bonus slides: local minima and non-
convex optimization in FFNNs



Local minima

• Convex optimization procedure for non-
convex problems?

• Local minima not a problem in high-
dimensional spaces

• more common: saddle points



Local minima

Ek Lm



Saddle points


