University of
Zurich™

Institute of Computational Linguistics

Machine Translation

7 Neural Networks

Mathias Muller

Last time

Y= X

R "SI BN
. Logistic Regression A

1+ - X A c. (s
X = xz C = Cz_
~ h ? 4 b 0

) = O’(C x7 o (x) = /(+ex

herprekaRon . Dy *ELM
coF fe Eo&v\'\ue clasr

Topics of today
FENN

 Neural networks: feed-forward neural
networks or “multi-layer perceptrons”

MLP

» Backpropagation

 Gradient Descent

Remember: logistic regression

X /

\

E
(3] e

G v

Multi-class classification with linear models

Yroiing data

— J

X
4]
3

ﬂ(,
[: Cot
G

[

o e
o) =<
+
-
Q
P>

Multi-class classification with linear models

+roi V‘“"JL dAat a

X 7
(3] ey’
[:] o
5] ey

W

a—
c—

i

1 L 3
¢ § b
& 3

S W ;1> [

Softmax

University of

Zurich™

Institute of Computational Linguistics

Feed-forward Neural Networks

Feed-forward neural networks

Are like logistic regression extended:

* multiple layers, each with its own
weights

* the activation function does not have to
be sigmoid

Why would we want to extend log reg?

 Linear models, can only solve linear
problems

* Need more
complicated model
families

Nesting linear transformations
— =2
5- Wa

2-Ulwa
v UQ)

o)
\

0O o

FFNN structure, vector notation

« Several layers, each with their own
weight matrix and activation function

S—(cbw oA A

B = O?Ql\/ 3) A
< - 03<M€) o

How to understand drawings of FFNNs

W v

O Ix '+ Sx&

O
50 <O
O/O

Layers

 “hidden” layers,

 “deep” neural network

1 >

ONCHRORV

Ny

ol

Activation functions (“non-linearities”)

e actually crucial for non-linear behaviour!

 applied element-wise

e - O‘(j) RELU = wmar QO,%)

OO O

Kew< {gz 1) -

When to use which activation function

* hidden layer: always use RELU

* output layer:
* regression problem: idMon

Ne @w‘(‘/(r\‘o\

» classification problem: softmax

Summary FFNN structure

* have several layers,
e a layer
y —
- takes a vector as input &

e computes a matrix- vector product with a
weight matrix \Wa

« and applies an activation function
element-wise =L (W q)

 output: a vector

University of

Zurich™

Institute of Computational Linguistics

Learning optimal parameters

How to learn optimal weights?

 define how to measure error, a loss
function

* Two-step procedure:

* find partial derivative of a loss function
with respect to each weight

b&\dc‘PfC/\D&*?C\RO\:
* update each parameter using its partial

Z , derivative Ca(@&(«{@l/p(Ao/ cent

Prerequisite: differentiability

* Entire computation must be smooth
enough: differentiable or piece-wise C¢ %)
differentiable

|

recCyv

Loss functions

 Our actual metric may not be
differentiable, so we have to define a
surrogate loss function

Cofredk 7'- AL 1 L
S
g 5 3
[
s § N
{)(QUUO\:‘O“‘ {)(20‘4\0\’\0"\

Vot —losr squaveol ©X

Typical loss functions

VA
 For regression: MSE L (7 ,7

N am7 ve kel s

* For classification: cross-entropy

.\ for gistaburions !

Mean squared error loss (MSE)

y

A - 2
— Z Q:orrect.y ~ preds C’g“"'l)
iy

N

Cross-entropy loss (CE) /\\l d\’L‘

University of

ii Zurich™

Institute of Computational Linguistics

Reverse Differentiation:
Backpropagation

Backpropagation

 Want: influence of each parameter on
current loss AL

AW
« Writing out analytical gradient too
complicated for nested functions

* Instead: staged computation by applying
the chain rule of calculus

Chain rule of calculus

dz dz

ox 0‘7

= 37<’A2 ’d_%_
\7, 2 4

2= dyzz
x = Y ox

@20

Backpropagation < < ZX

What backpropagation sees:
 graph of nodes

 every node can perform forward pass
and remember its inputs

OL/J‘@UL of n = V\.«COrwwM(ﬁ/\pﬁa

 every node can perform backward pass

and knows its local gradient |
& = n. bac{cu&«p{({/\eaa(‘XMWQ

9 n.wW

Every node can perform forward pass and
remember its inputs

class LinearLayer(Layer):

def __init_ (self, input_dim: int, output_dim: int) -> None:
super().__init_ ()

self.params ["W"]
self.params["b"]

np.random. random_sample(size=(input_dim, output_dim))
np.zeros(output_dim)

def forward(self, inputs: Tensor) —> Tensor:

:param inputs: shape (batch_size, input_dim)
:return: shape (batch_size, output_dim)

remember inputs for backward pass
self.inputs = inputs

return np.dot(inputs, self.params["W"]) + self.params["b"]

Every node can perform backward pass and
knows its local gradient

def backward(self, grad: Tensor) -> Tensor:

gradient for weights: outer product of head gradient with inputs
self.grads["W"] = np.dot(self.inputs.T, grad)

gradient for biases: head gradient, sum across batch
summing across rows is a short form for:

np.dot(vector_of_ones, head_gradient)
self.grads["b"] = np.sum(grad, axis=0)

return gradient on inputs
return np.dot(grad, self.params(["W"'].T)

oAf _
ORI
JQQ<)7C+ C%(z’\

G 3} 13} 0.’}3
DiCE P
0 3 -0S3 1.00

_—

520 _ /%(,Z %« 100 Qoﬂ»’”\’d
b cclctonrof

3} A3} G.3}3
(Y
° o3 0.53 A.

L
~
"

Backpropagation £(x) =% 2r =

» (receive some data (X, y))
» (forward pass: compute output)
* (compute loss)

* in reverse order, compute local gradient
and multiply with head gradient

2
X/' A% — Z
X2 1

Summary Backpropagation

« Compute partial derivatives of loss
function with respect to all network
parameters

* View FFNN as computational graph with
operations

» Each operation must know how to do
forward and backward passes

University of

Zurich™

Institute of Computational Linguistics

Optimization: Gradient Descent

Gradient descent

* Purpose: given a forward and backward
pass, find better parameters

* |lterative optimization algorithm

What gradient descent sees

@ Gisk of et (2 Gt of ‘Gmdi%h
i L)

W

U 5

WU

\/ L
AV J

@ \€Cl(V\‘\V‘3 yorte OOOO'I

Gradient descent procedure

culremb
Pwﬁqu

)

At

WalIN

—

3(406%\7

-3
2%
AA}

0.

Gradient descent in code

#! /bin/python3
—x- coding: utf-8 —%-

from selfnet.net import Network

class Optimizer(object):

def __init_ (self,
learning_rate: float = ©.001) -> None:

self.learning_rate = learning_rate
def step(self, net: Network) -> None:
raise NotImplementedError
class SGD(Optimizer):
def step(self, net: Network) -> None:

for param, grad in net.params_and_grads():
param -= self.learning_rate = grad

def __repr__(self):

return "Optimizer({type=SGD, learning_rate=%s)" % (self.learning_rate)

Gradient descent variants

» Batch gradient descent: estimate
gradients once and compute 1 update
using the entire training set

« Stochastic gradient descent: use one
single training example for 1 update

@Minibatch stochastic gradient descent:
% use several examples for 1 update

Gradient descent hyperparameters

* Learning rate alpha ™
* Minibatch size

 How many updates

Summary

* FFNNs consist of layers, each layer is a
linear transformation followed by an
activation function

« Backpropagation is used to obtain
gradients of the loss function with respect
to each parameter

* Gradient descent updates parameters
iteratively, using previously computed
gradients

A

Links / Further Reading (there are LOTS)

cs231n specific lecture about FFNNs with Andrej Karpathy:
https://www.youtube.com/watch?v=i940vYb6noo&index=4&list=P
Lkt2uSq6rBVctENoVBg1TpCC70Qi31AIC

* Here is a neural network library written only in numpy:

https://github.com/bricksdont/selfnet

» Chris Olah’s blog post on backprop:

http://colah.github.io/posts/2015-08-Backprop/

* “Deep Learning with Python” book by F. Chollet (on OLAT)
» “Deep Learning” book by Goodfellow et al (on OLAT)

» hitp://neuralnetworksanddeeplearning.com/ online book by

Michael Nielsen

« Section 1 of Koehn’s draft of NMT Chapter (on OLAT)

 www.playground.tensorflow.org

University of

Zurich™

Institute of Computational Linguistics

Bonus slides: local minima and non-
convex optimization in FFNNs

Local minima

« Convex optimization procedure for non-
convex problems?

* Local minima not a problem in high-
dimensional spaces

* more common: saddle points

Local minima

Saddle points

SO 172
2/ “1/2

1/2
/ -1

