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Topics of today
FENN

 Neural networks: feed-forward neural
networks or “multi-layer perceptrons”

MLP

» Backpropagation

 Gradient Descent



Remember: logistic regression
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Multi-class classification with linear models
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Multi-class classification with linear models
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Softmax




University of

Zurich™

Institute of Computational Linguistics

Feed-forward Neural Networks



Feed-forward neural networks

Are like logistic regression extended:

* multiple layers, each with its own
weights

* the activation function does not have to
be sigmoid



Why would we want to extend log reg?

 Linear models, can only solve linear
problems

* Need more
complicated model
families



Nesting linear transformations
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FFNN structure, vector notation

« Several layers, each with their own
weight matrix and activation function
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How to understand drawings of FFNNs
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Layers

 “hidden” layers,

 “deep” neural network
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Activation functions (“non-linearities”)

e actually crucial for non-linear behaviour!

 applied element-wise
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When to use which activation function

* hidden layer: always use RELU

* output layer:
* regression problem: idMon

Ne @w‘(‘/(r\‘o\

» classification problem: softmax



Summary FFNN structure

* have several layers,
e a layer
y —
- takes a vector as input &

e computes a matrix- vector product with a
weight matrix \Wa

« and applies an activation function
element-wise =L ( W q)

 output: a vector
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Learning optimal parameters



How to learn optimal weights?

 define how to measure error, a loss
function

* Two-step procedure:

* find partial derivative of a loss function
with respect to each weight

b&\dc‘PfC/\D&*?C\RO\:
* update each parameter using its partial
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Prerequisite: differentiability

* Entire computation must be smooth
enough: differentiable or piece-wise C¢ %)
differentiable
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Loss functions

 Our actual metric may not be
differentiable, so we have to define a
surrogate loss function
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Typical loss functions

VA
 For regression: MSE L (7 ,7
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* For classification: cross-entropy

.\ for gistaburions !



Mean squared error loss (MSE)
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Cross-entropy loss (CE) /\\l d\’L‘
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Reverse Differentiation:
Backpropagation



Backpropagation

 Want: influence of each parameter on
current loss AL

AW
« Writing out analytical gradient too
complicated for nested functions

* Instead: staged computation by applying
the chain rule of calculus



Chain rule of calculus
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Backpropagation < < ZX

What backpropagation sees:
 graph of nodes

 every node can perform forward pass
and remember its inputs
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 every node can perform backward pass

and knows its local gradient |
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Every node can perform forward pass and
remember its inputs

class LinearLayer(Layer):

def __init_ (self, input_dim: int, output_dim: int) -> None:
super().__init_ ()

self.params ["W"]
self.params["b"]

np.random. random_sample(size=(input_dim, output_dim))
np.zeros(output_dim)

def forward(self, inputs: Tensor) —> Tensor:

:param inputs: shape (batch_size, input_dim)
:return: shape (batch_size, output_dim)

# remember inputs for backward pass
self.inputs = inputs

return np.dot(inputs, self.params["W"]) + self.params["b"]



Every node can perform backward pass and
knows its local gradient

def backward(self, grad: Tensor) -> Tensor:

# gradient for weights: outer product of head gradient with inputs
self.grads["W"] = np.dot(self.inputs.T, grad)

# gradient for biases: head gradient, sum across batch
# summing across rows is a short form for:

# np.dot(vector_of_ones, head_gradient)
self.grads["b"] = np.sum(grad, axis=0)

# return gradient on inputs
return np.dot(grad, self.params(["W"'].T)
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Backpropagation £(x) =% 2r =

» (receive some data (X, y))
» (forward pass: compute output)
* (compute loss)

* in reverse order, compute local gradient
and multiply with head gradient
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Summary Backpropagation

« Compute partial derivatives of loss
function with respect to all network
parameters

* View FFNN as computational graph with
operations

» Each operation must know how to do
forward and backward passes
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Optimization: Gradient Descent



Gradient descent

* Purpose: given a forward and backward
pass, find better parameters

* |lterative optimization algorithm



What gradient descent sees
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Gradient descent procedure
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Gradient descent in code

#! /bin/python3
# —x- coding: utf-8 —%-

from selfnet.net import Network

class Optimizer(object):

def __init_ (self,
learning_rate: float = ©.001) -> None:

self.learning_rate = learning_rate
def step(self, net: Network) -> None:
raise NotImplementedError
class SGD(Optimizer):
def step(self, net: Network) -> None:

for param, grad in net.params_and_grads():
param -= self.learning_rate = grad

def __repr__(self):

return "Optimizer({type=SGD, learning_rate=%s)" % (self.learning_rate)



Gradient descent variants

» Batch gradient descent: estimate
gradients once and compute 1 update
using the entire training set

« Stochastic gradient descent: use one
single training example for 1 update

@Minibatch stochastic gradient descent:
% use several examples for 1 update



Gradient descent hyperparameters

* Learning rate alpha ™
* Minibatch size

 How many updates



Summary

* FFNNs consist of layers, each layer is a
linear transformation followed by an
activation function

« Backpropagation is used to obtain
gradients of the loss function with respect
to each parameter

* Gradient descent updates parameters
iteratively, using previously computed
gradients
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Links / Further Reading (there are LOTS)

cs231n specific lecture about FFNNs with Andrej Karpathy:
https://www.youtube.com/watch?v=i940vYb6noo&index=4&list=P
Lkt2uSq6rBVctENoVBg1TpCC70Qi31AIC

* Here is a neural network library written only in numpy:

https://github.com/bricksdont/selfnet

» Chris Olah’s blog post on backprop:

http://colah.github.io/posts/2015-08-Backprop/

* “Deep Learning with Python” book by F. Chollet (on OLAT)
» “Deep Learning” book by Goodfellow et al (on OLAT)

» hitp://neuralnetworksanddeeplearning.com/ online book by

Michael Nielsen

« Section 1 of Koehn’s draft of NMT Chapter (on OLAT)

 www.playground.tensorflow.org
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Bonus slides: local minima and non-
convex optimization in FFNNs



Local minima

« Convex optimization procedure for non-
convex problems?

* Local minima not a problem in high-
dimensional spaces

* more common: saddle points



Local minima




Saddle points
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