

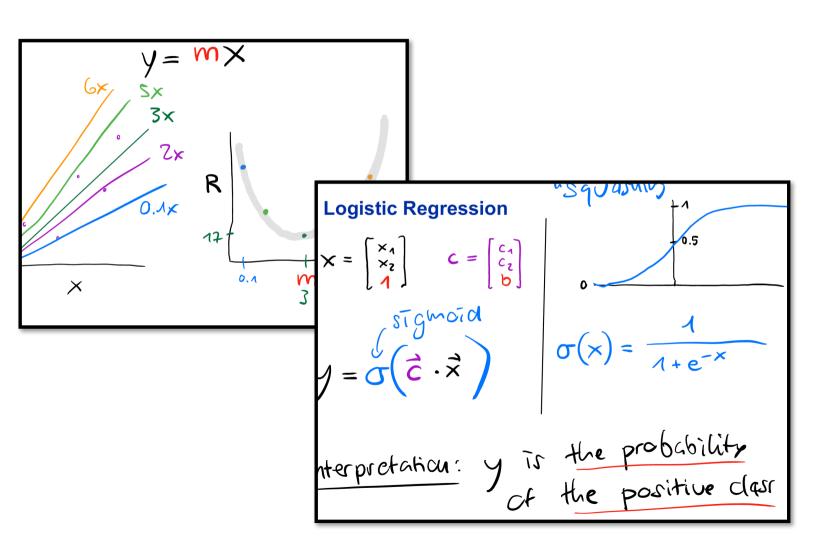
Machine Translation

7 Neural Networks

Mathias Müller

was son so

Last time



Topics of today

PFNN

 Neural networks: feed-forward neural networks or "multi-layer perceptrons",

Backpropagation

Gradient Descent

Remember: logistic regression

training data

$$\overrightarrow{\mathbf{w}} = \begin{bmatrix} 0.1 \\ -2 \end{bmatrix}$$

$$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$$
"good"

"bad"

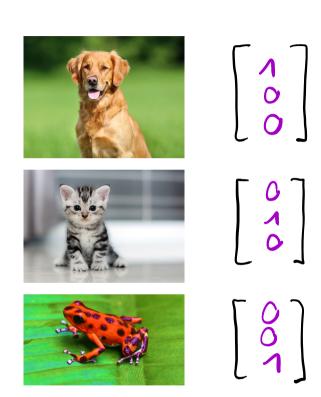
"acresome"

Probability of
Positive class

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Multi-class classification with linear models

training	data
×	Y
$\begin{bmatrix} 3\\5\\4 \end{bmatrix}$	"dog"
{ } }	"cat"
	"frog"



Multi-class classification with linear models

$$W = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

vector with pro-
bability distribution =
$$S(W) = \begin{bmatrix} -1.6 \\ 0.4 \\ 1.2 \end{bmatrix}$$

Softmax

$$S(\vec{z}) = \frac{e^{2j}}{\sum_{k=1}^{2} e^{2k}}$$

$$doj = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$cat = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\overrightarrow{W} \stackrel{?}{\times} = \begin{bmatrix} -1.6 \\ 0.4 \\ 1.2 \end{bmatrix}$$

with softwax

$$S\left(\overrightarrow{W}\right) = \begin{bmatrix} 0.04 \\ 0.30 \\ 0.66 \end{bmatrix}$$

Institute of Computational Linguistics

Feed-forward Neural Networks

Feed-forward neural networks

Are like logistic regression extended:

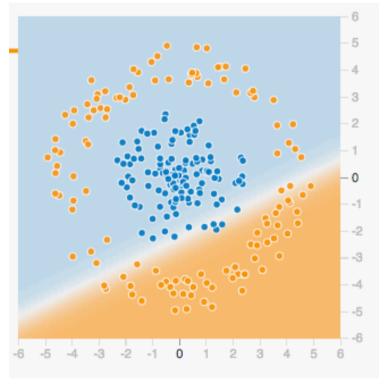
multiple layers, each with its own weights

 the activation function does not have to be sigmoid

Why would we want to extend log reg?

Linear models, can only solve linear problems

 Need more complicated model families



Nesting linear transformations

$$\vec{b} = \vec{w}\vec{a}$$

$$\vec{c} = \vec{u}(\vec{w}\vec{a})$$

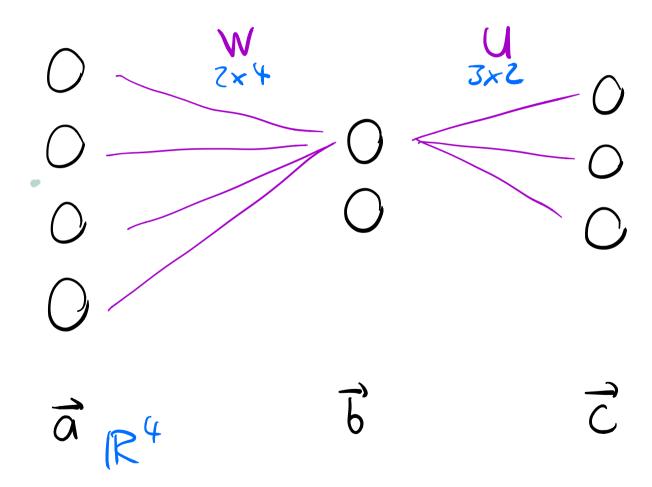
FFNN structure, vector notation

 Several layers, each with their own weight matrix and activation function

$$\vec{b} = \sigma_{x}(W\vec{a})$$

$$\vec{c} = \sigma_{z}(U\vec{b})$$

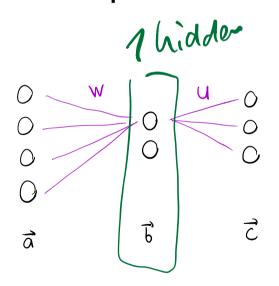
How to understand drawings of FFNNs

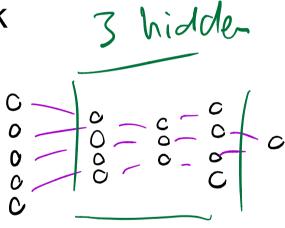


Layers

"hidden" layers,

• "deep" neural network





Activation functions ("non-linearities")

- actually crucial for non-linear behaviour!
- applied element-wise

$$\vec{e} = \sigma(\vec{d})$$

$$RELU = \max(0, x)$$

$$RELU(\begin{bmatrix} -2 \\ 0 \\ 3 \\ -2 \end{bmatrix}) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

When to use which activation function

hidden layer: always use RELU

output layer:

regression problem: identity function

no function

classification problem: softmax

Summary FFNN structure

- have several layers,
- a layer
 - takes a vector as input
 - computes a matrix-vector product with a weight matrix
 - and applies an activation function element-wise
 - output: a vector

Institute of Computational Linguistics

W U

Learning optimal parameters

How to learn optimal weights?

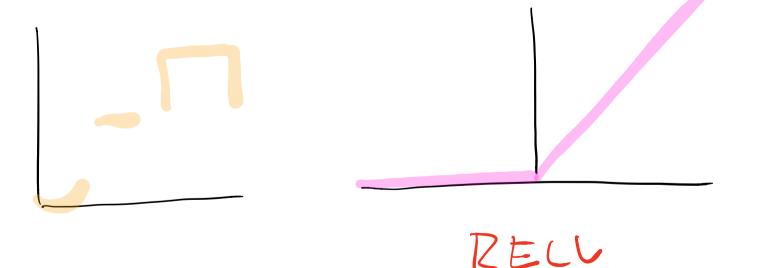
define how to measure error, a loss function

- Two-step procedure:
 - find partial derivative of a loss function with respect to each weight

• update each parameter using its partial derivative

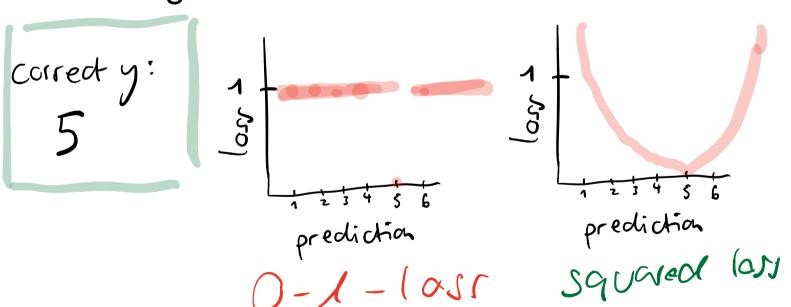
Prerequisite: differentiability

 Entire computation must be smooth enough: differentiable or piece-wise differentiable



Loss functions

 Our actual metric may not be differentiable, so we have to define a surrogate loss function



Typical loss functions

• For regression: MSE

L(y, 9)

For classification: cross-entropy

Mean squared error loss (MSE)

$$\frac{1}{N} \sum_{x,y}^{N} \left(\text{correct-} y - \text{prediction} \right)^{2}$$

Cross-entropy loss (CE)

$$P = \begin{bmatrix} 0.7 \\ 0.1 \\ 0.2 \end{bmatrix}$$

$$q = \begin{bmatrix} x \\ 0 \\ 0 \end{bmatrix}$$

$$CE(P,q) = -\sum_{k=1}^{K} q_k * log(P_k)$$

Institute of Computational Linguistics

Reverse Differentiation: Backpropagation

Backpropagation

Want: influence of each parameter on current loss

9 w

 Writing out analytical gradient too complicated for nested functions

 Instead: staged computation by applying the chain rule of calculus

Chain rule of calculus

$$\frac{dz}{dx} = \frac{dz}{dy} * \frac{dy}{dx}$$

$$y = 3 \times = 12$$

$$Z = y^{2}$$

$$X = 4$$

$$\frac{dz}{dy} = 2y = 24 \frac{dz}{dx} = 24 \times 3$$

View FFNN as a computational graph

$$W_0$$
 2.00
 $\times 0^{-1.0}$
 $\times 0^{-2.0}$
 $\times 1$
 \times

$$y = w_0 \times_0 + w_1 \times_1 + w_2$$
 $O(y) = \frac{1}{1 + e^{-y}}$
= 0.73!

Backpropagation

×^z Zx

What backpropagation sees:

- graph of nodes
- every node can perform forward pass and remember its inputs

output of
$$n = n.$$
 for ward (inputs)

 every node can perform backward pass and knows its local gradient

Every node can perform forward pass and remember its inputs

```
class LinearLaver(Laver):
25
26
27
         def __init__(self, input dim: int, output_dim: int) -> None:
28
             super(). init ()
29
             self.params["W"] = np.random.random_sample(size=(input_dim, output_dim))
30
             self.params["b"] = np.zeros(output dim)
31
32
         def forward(self, inputs: Tensor) -> Tensor:
33
             .....
34
35
             :param inputs: shape (batch_size, input_dim)
36
             :return: shape (batch_size, output_dim)
             .....
37
38
39
             # remember inputs for backward pass
             self.inputs = inputs
40
41
             return np.dot(inputs, self.params["W"]) + self.params["b"]
42
```

Every node can perform backward pass and knows its local gradient

```
44
        def backward(self, grad: Tensor) -> Tensor:
45
46
            # gradient for weights: outer product of head gradient with inputs
47
             self.grads["W"] = np.dot(self.inputs.T, grad)
48
            # gradient for biases: head gradient, sum across batch
49
             # summing across rows is a short form for:
50
51
            # np.dot(vector of ones, head gradient)
             self.grads["b"] = np.sum(grad, axis=0)
52
53
54
            # return gradient on inputs
55
             return np.dot(grad, self.params["W"].T)
56
```

Computational graph view

RULES

Computational graph view

$$f(x) = \frac{1}{x} \frac{dx}{dx} = -1/x^{2}$$

$$f(x) = c + x \frac{df}{dx} = 1$$

$$x_{0} = -1/x^{2}$$

$$x$$

Backpropagation

$$f(x) = ax$$
 $\frac{df}{dx} =$

- (receive some data (X, y))
- (forward pass: compute output)
- (compute loss)
- in reverse order, compute local gradient and multiply with head gradient

$$\frac{2}{-1 \times 3}$$
 $\times 2$
 $\frac{-1}{2 \times 3}$
 $\times 3$
 $\times 3$

Summary Backpropagation

- Compute partial derivatives of loss function with respect to all network parameters
- View FFNN as computational graph with operations
- Each operation must know how to do forward and backward passes

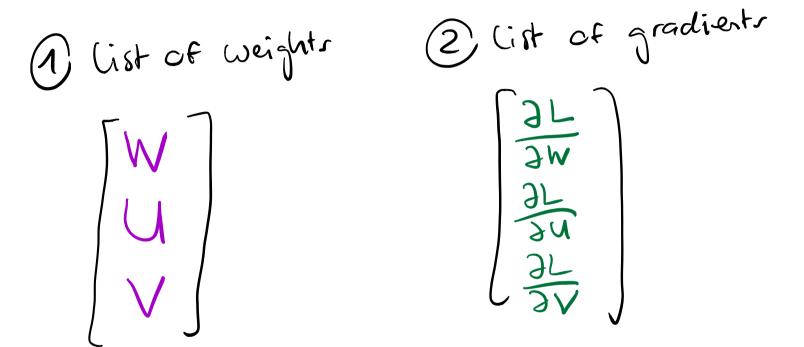
Institute of Computational Linguistics

Optimization: Gradient Descent

Gradient descent

- Purpose: given a forward and backward pass, find better parameters
- Iterative optimization algorithm

What gradient descent sees



3 learning rate 0.0001

Gradient descent procedure

params

gradients

new parameters

$$\begin{bmatrix}
 1.7 - 0 \\
 2 - 0 \\
 4 - 0 \\
 4 - 0 \\
 3 - 0 \\
 \hline
 3 - 0 \\
 4 - 0.1$$

$$\mathcal{C} = 0.01$$

Gradient descent in code

```
#! /bin/python3
    # -*- coding: utf-8 -*-
 3
    from selfnet.net import Network
 5
 6
    class Optimizer(object):
 8
         def __init__(self,
 9
10
                      learning rate: float = 0.001) -> None:
11
12
             self.learning_rate = learning_rate
13
14
         def step(self, net: Network) -> None:
             raise NotImplementedError
16
17
18
     class SGD(Optimizer):
19
         def step(self, net: Network) -> None:
20
21
22
             for param, grad in net.params_and_grads():
23
                 param -= self.learning_rate * grad
24
         def __repr__(self):
26
27
             return "Optimizer(type=SGD, learning_rate=%s)" % (self.learning_rate)
```

Gradient descent variants

 Batch gradient descent: estimate gradients once and compute 1 update using the entire training set

 Stochastic gradient descent: use one single training example for 1 update

Minibatch stochastic gradient descent: use several examples for 1 update

Gradient descent hyperparameters

- Learning rate *alpha* □ □
- Minibatch size
- How many updates

Summary

- **FFNNs** consist of layers, each layer is a linear transformation followed by an activation function
- Backpropagation is used to obtain gradients of the loss function with respect to each parameter
- Gradient descent updates parameters iteratively, using previously computed gradients

Links / Further Reading (there are LOTS)

cs231n specific lecture about FFNNs with Andrej Karpathy:

https://www.youtube.com/watch?v=i94OvYb6noo&index=4&list=P Lkt2uSq6rBVctENoVBg1TpCC7OQi31AIC

- Here is a neural network library written only in numpy: https://github.com/bricksdont/selfnet
- Chris Olah's blog post on backprop: http://colah.github.io/posts/2015-08-Backprop/
- "Deep Learning with Python" book by F. Chollet (on OLAT)
- "Deep Learning" book by Goodfellow et al (on OLAT)
- http://neuralnetworksanddeeplearning.com/ online book by Michael Nielsen
- Section 1 of Koehn's draft of NMT Chapter (on OLAT)
- www.playground.tensorflow.org

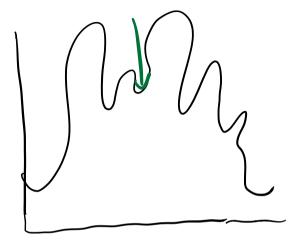
Institute of Computational Linguistics

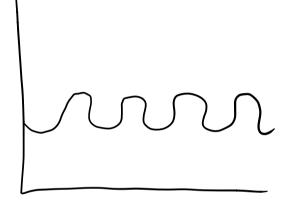
Bonus slides: local minima and nonconvex optimization in FFNNs

Local minima

- Convex optimization procedure for nonconvex problems?
- Local minima not a problem in highdimensional spaces
- more common: saddle points

Local minima





Saddle points

