Institute of Computational Linguistics

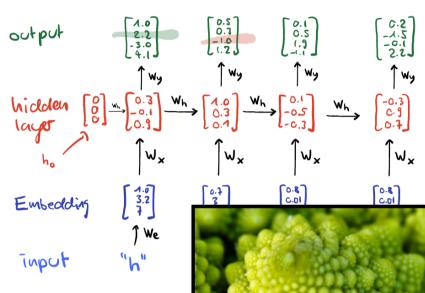
Machine Translation

10 Encoder-Decoder Models

Mathias Müller

Last time

How to use an RNN as a language model "hello"



Topics of this lesson

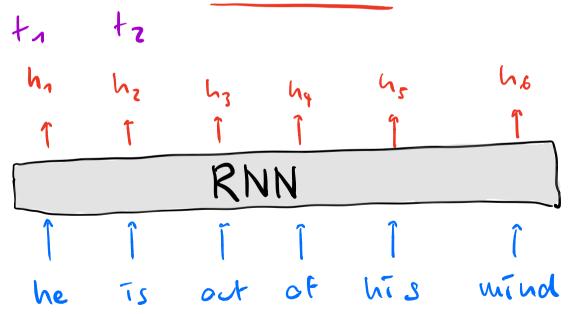
- Encoder-Decoder Models: How to use RNNs for machine translation
- Main weaknesses of simple encoderdecoder models
- Daikon: Our educational NMT tool, written in Tensorflow

Institute of Computational Linguistics

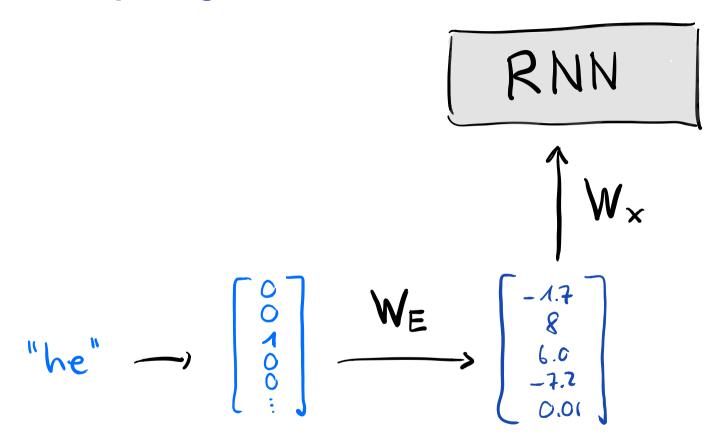
How to use RNNs for machine translation

RNNs high-level review

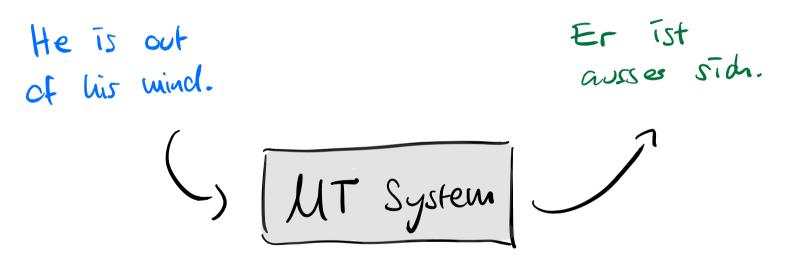
- Read or write sequences, or both
- Compute a new hidden state at each time step



Text input high-level review



Machine translation: problem definition

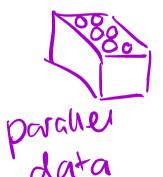


How to build machine translation with blocks we already know?

FFNNs

Embeddings

RNNS

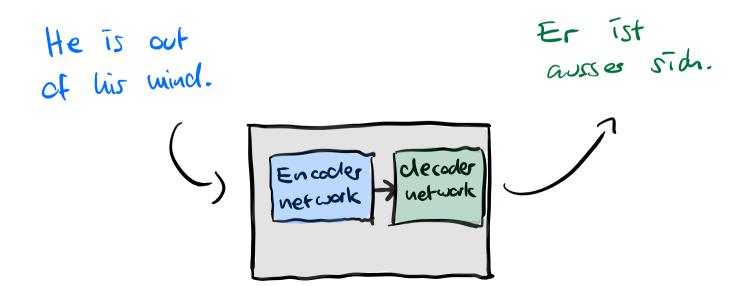


https://bit.ly/2T0GDeK

Encoder-decoder Approach

Use 2 RNNs:

- Encoder summarizes the source
- Decoder produces the target



last en coder 1024 hidden state Encoder 256 512 h, $\uparrow W_{x} \qquad \uparrow W_{x} \qquad \uparrow W_{x}$ $\int W_{E} \qquad \int W_{E} \qquad \int W_{E}$ mind CEO(5> Nis

Decoder Training!

[:] Wh Wh Wh Wh $\int W_{x} \qquad \int W_{x}$ ↑W× \mathcal{W}_{E} \mathcal{W}_{E} \mathcal{W}_{E} Er ist ausser < BOS >

Summary Endoder-Decoder Model

- Key idea: use two separate RNNs,
 - Encoder to summarize ("encode") the source sentence
 - Decoder to generate the target sentence
- Use last hidden state of encoder to initialize hidden state of decoder

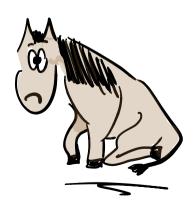
Institute of Computational Linguistics

Main Weaknesses of Encoder-Decoder Models

Sometimes NMT results are sad

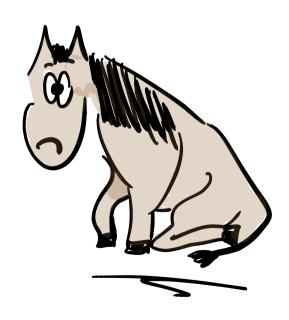
WorldViews

In Ukraine, Google translates Russia as 'Mordor' and top diplomat's name as 'sad little horse'



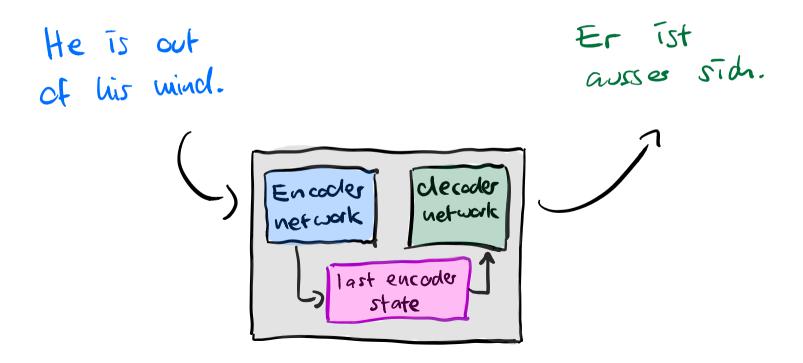
Two main reasons Enc-Dec results are sad

- Long sentences
- Open, infinite vocabulary



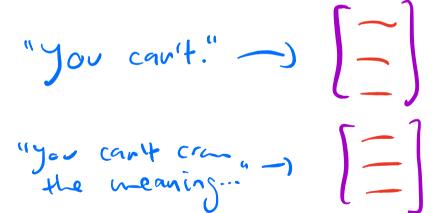
"Curse of sentence length"

Remember: last encoder state is the only information available to the decoder

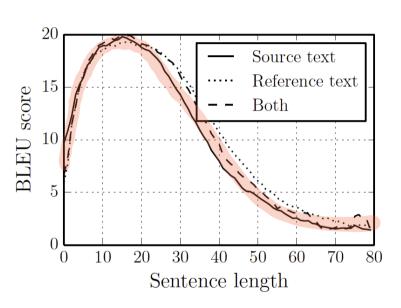


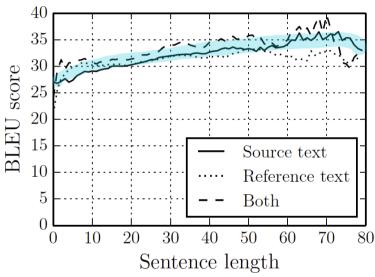
Curse of sentence length

You can't cram the meaning of a single \$&!#* sentence into a single \$!#&* vector!



Curse of sentence length (40 et al. 2014)





NMT*

SMT

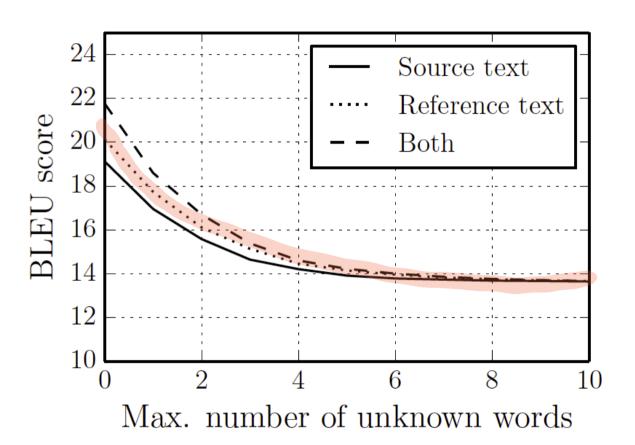
Vocabulary size

Important observations about vocabulary:

 Vocabulary must be decided at training time, and be quite small

 At test time, the system will encounter even more out-of-vocabulary words

Out-of-vocabulary words Cho et al. 2014



Summary Main Weaknesses

 Sentence length: encoder has to summarize entire sentences to a fixedsize vector, no matter how long they are

 Vocabulary: vocabulary must be fixed at training time, and be rather small

Both lead to low translation quality!

Another vegetable: Daikon

Educational Encoder-Decoder NMT tool written in Tensorflow

Serves as starting point for Exercise 5

Main actions in daikon

Train

daikon train -- source source.txt -- target target.txt

Translate

echo "Here is a sample input text" | daikon translate

Score

daikon score -- source source.txt -- target target.txt

Computation graph

```
def define computation graph(source vocab size: int, target vocab size: int, batch size: int);
   tf.reset_default_graph()
   # Placeholders for inputs and outputs
   encoder inputs = tf.placeholder(shape=(batch size, None), dtype=tf.int32, name='encoder inputs')
   decoder targets = tf.placeholder(shape=(batch size, None), dtype=tf.int32, name='decoder targets')
   decoder inputs = tf.placeholder(shape=(batch size, None), dtype=tf.int32, name='decoder inputs')
   with tf.variable_scope("Embeddings"):
        source_embedding = tf.get_variable('source_embedding', [source_vocab_size, C.EMBEDDING_SIZE])
        target_embedding = tf.get_variable('target_embedding', [source_vocab_size, C.EMBEDDING_SIZE])
        encoder inputs_embedded = tf.nn.embedding_lookup(source_embedding, encoder_inputs)
        decoder_inputs_embedded = tf.nn.embedding_lookup(target_embedding, decoder_inputs)
```

Computation graph

```
with tf.variable scope("Encoder"):
    encoder_cell = tf.contrib.rnn.LSTMCell(C.HIDDEN_SIZE)
    initial_state = encoder_cell.zero_state(batch_size, tf.float32)
    encoder outputs, encoder final state = tf.nn.dynamic rnn(encoder cell,
                                                              encoder_inputs_embedded,
                                                              initial state=initial state,
                                                              dtvpe=tf.float32)
with tf.variable scope("Decoder"):
    decoder_cell = tf.contrib.rnn.LSTMCell(C.HIDDEN_SIZE)
    decoder_outputs, decoder_final_state = tf.nn.dynamic_rnn(decoder_cell,
                                                              decoder_inputs_embedded,
                                                             initial_state=encoder_final_state,
                                                              dtype=tf.float32)
with tf.variable_scope("Logits"):
```

decoder logits = tf.contrib.layers.linear(decoder outputs, target vocab size)

Summary overall

 Encoder-Decoder Models: use RNNs for machine translation

- Main problems:
 - Long sentences
 - Open vocabulary

Daikon: simple in-house NMT tool

Exercise 5: time management

Further reading / recommended links

- Daikon: https://github.com/zurichnlp/daikon
- Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le (2014). Sequence to Sequence Learning with Neural Networks.
- Cho, Kyunghyun, Bart van Merriënboer, Dzmitry Bahdanau and Yoshua Bengio (2014). On the Properties of Neural Machine Translation: Encoder-Decoder Approaches.
- NVIDIA Blog by Kyunghyun Cho: https://devblogs.nvidia.com/introduction-neural-machine-translation-with-gpus/
- Koehn Book NMT Chapter (on OLAT)
- Do not get hung up on attention until two weeks from now!

Next time

Termin	Thema
19.02.	Einführung; regelbasierte vs. datengetriebene Modelle
26.02.	Evaluation
05.03.	Trainingsdaten, Vor- und Nachverarbeitung
12.03.	N-Gramm-Sprachmodelle, statistische Maschinelle Übersetzung
19.03.	Grundlagen Lineare Algebra und Analysis, Numpy
26.03.	Lineare Modelle: lineare Regression, logistische Regression
02.04.	Neuronale Netzwerke: MLPs, Backpropagation, Gradient Descent
09.04.	Word Embeddings, Recurrent neural networks
16.04.	Tensorflow und Google Cloud Platform
30.04.	Encoder-Decoder-Modell
07.05.	Decoding-Strategien
14.05.	Attention-Mechanismus, bidirektionales Encoding Byte Pair Encoding
21.05.	Maschinelle Übersetzung in der Praxis (Anwendungen)
28.05.	Zusammenfassung, Q&A Prüfung
Eventuell: Gastv	ortrag Prof. Artem Sokolov
04.06., Raum TB	A, 16:15 bis 18:00 Uhr
Prüfung (schriftl	lich)
18.06., AND-2-48	3, 16.15 bis 18:00 Uhr

L TRAINING DATA - SUT

NUT

? this is kinda important

Advance notice: exam questions

- On May 28, we will have an exam Q&A
- Until May 28, please post on OLAT:

Exam question that would be fair in your opinion

 We will discuss exactly those questions that day.