
Bachelor’s thesis

for the degree of

Bachelor of Arts

presented to the Faculty of Arts and Social Sciences

of the University of Zurich

Taxonomy Learning
without Labeled Data

Building on TaxoGen

Author: Janis Goldzycher

Student ID: 13-926-357

Examiner: Prof. Martin Volk

Supervisor: Nora Hollenstein

Institute of Computational Linguistics

Submission date: 10.06.2019

Abstract

Taxonomy learning is of great interest for automated knowledge acquisition since

Taxonomies not only are a popular way to represent knowledge, but they also enable

deductive reasoning and constitute an important step for ontology learning. Tax-

onomies are made of hypernym relations. Most current methods need labeled data

to extract hypernym-relations. TaxoGen is a method for unsupervised learning of

topical taxonomies using distributional semantics and a recursive, adaptive cluster-

ing process. In this thesis I reimplement TaxoGen, test it with different embedding

and clustering techniques, and introduce a new label score.

Zusammenfassung

Das algorithmische Lernen von Taxonomien ist ein zentrales Thema für automa-

tische Wissensanreicherung, weil Taxonomien nicht nur eine leicht zugängliche Art

der Wissensrepräsentation darstellen, sondern auch weil sie deduktives Schliessen

ermöglichen. Taxonomien bestehen aus Hypernymrelationen. Die meisten aktuellen

Methoden benötigen annotierte Daten, um solche Hypernymrelationen zu extrahieren.

TaxoGen ist eine unsupervisierte Methode für das Erlernen von Thementaxonomien

basierend auf distributioneller Semantik und einem anpassungsfähigen, rekursiven

Clusteringprozess. In dieser Arbeit reimplementiere ich TaxoGen, teste die Meth-

ode mit verschiedenen Embeddings und Clusteringtechniken und führe einen neuen

Labelscore ein.

Acknowledgement

I want to thank my supervisor Nora Hollenstein for her continuous support, for

her patience and for getting me interested in the topic of ontology learning and

taxonomy learning through her lectures. I would like to thank Martin Volk for his

support when I was not sure if this thesis could be finished, Simon Clematide for

rescuing me when I thought the server setup would never work and Jochen Leidner

for the interesting and illuminating discussion on topical taxonomies. Many thanks

to Max Lauber, Nils Mollenhauer and Aneta Zuber for proof reading.

ii

List of Acronyms

CS Computer Science

DBLP dblp computer science bibliography

MWE Multiword Expression

NLP Natural Language Processing

NP Noun Phrase

PMI Pointwise Mutual Information

PPMI Positive Pointwise Mutual Information

POS Part-Of-Speech

RNN Recurrent Neural Network

SPC Signal Processing Corpus

SVD Singular Value Decomposition

SVM Support Vector Machine

UTF-8 Unicode Transformation Format (8-bit)

iii

Contents

Abstract i

Acknowledgement ii

List of Acronyms iii

1 Introduction 1

2 Theoretical background and related work 3

2.1 Pattern-based Hypernym Extraction 4

2.2 Embedding-based Hypernym Extraction 6

2.3 Taxonomy Construction . 8

3 TaxoGen 11

3.1 Adaptive Spherical Clustering . 11

3.2 Representativeness Score . 12

3.3 Local Embeddings . 14

3.4 TaxoGen Implementation . 15

3.5 Summary and Limits . 18

4 Methods - Building on TaxoGen 20

4.1 Embeddings . 20

4.1.1 GloVe Embeddings . 20

4.1.2 ELMo Embeddings . 20

4.1.3 Why Test these Embeddings . 21

4.2 Clustering . 22

4.3 Label Score . 23

4.3.1 Distributional Inclusion Score 23

4.3.2 Hyponym Classification Score 24

5 Experiments and Results 26

5.1 Dataset . 26

iv

Contents

5.2 Implementation . 26

5.3 Evaluation . 28

5.3.1 General Procedure . 28

5.3.2 Metrics . 28

5.3.3 Evaluation Results . 30

6 Discussion 34

6.1 Comparison with the TaxoGen Results 34

6.2 Comparison between Different Versions 35

6.3 About the Evaluation of Topical Taxonomies 35

6.4 Future Work . 37

7 Conclusion 39

References 40

v

1 Introduction

Traditionally, knowledge has been stored as written text or, even earlier, has been

passed on in oral form. Today, we are looking for and developing ways to store

knowledge in a machine-readable way. Knowledge stored as machine-readable data

is usually called structured data. In contrast, text, images, video and other media

contain information which is not in the same way accessible to machines and is called

unstructured data.1 Taxonomies are a way to store a specific kind of structured data,

namely hierarchical data. In the field of computer science and computational lin-

guistics the term taxonomy mostly refers to domain taxonomies, which only store

knowledge about a particular domain. Taxonomies specifically facilitates deductive

reasoning which makes them useful for many downstream tasks and applications

including search engines, question answering systems, expert systems, virtual as-

sistants and different kinds of autonomous agents. Lastly, taxonomies constitute

the backbone on which ontologies are built. Ontologies provide downstream tasks

like the ones listed above with even more knowledge. Taxonomy learning refers to

techniques that automatically extract, learn, or induce a taxonomy from large cor-

pora of raw text. It can be seen as a specific mapping of unstructured to structured

data. Taxonomy learning thereby makes the extracted knowledge accessible to all

kinds of software systems that can then further process and use this knowledge for

downstream tasks.

In this thesis I focus on TaxoGen, a method to learn topical taxonomies in an

unsupervised fashion. A topical taxonomy is a kind of taxonomy which contains

hierarchical relations between entire topics, not just between concepts or words.

TaxoGen mainly relies on clustering, local embeddings and a score to measure how

representative a term is for a topic. I reimplement and advance the method in this

thesis. Specifically, my contributions are as follows:

1. I reimplement TaxoGen to reproduce the results reported in its publication and

formalize parts of the original TaxoGen implementation that are not described

in its publication or differ from the descriptions in the publication.

1Of course, these types of data all have rich structures too. Their structures are just, for now,
not easily accessible to computers.

1

Chapter 1. Introduction

2. I motivate and implement the usage of new embedding and clustering algo-

rithms for TaxoGen.

3. I propose a label score for the ranking of terms within topics to enhance the

coherency of the taxonomy.

4. I conduct extensive testing of the different TaxoGen configurations proposed

in this thesis with several metrics and discuss the usefulness of these metrics.

The thesis is structured as follows: In Chapter 2 I briefly explain the necessary

linguistic background and then review the existing rule-based and machine learning-

based approaches for hypernym extraction and taxonomy construction. The Chapter

3 is devoted to explaining TaxoGen and its implementation in depth and discuss its

current limits. In Chapter 4, I describe my own methods and contributions to

enhance TaxoGen. In Chapter 5, I describe the experimental setup, the evaluation

procedure and the results. In Chapter 6, I discuss the results, the evaluation metrics

used and I sketch ideas for further developments. Finally, I conclude the thesis with

Chapter 7.

2

2 Theoretical background and related

work

Taxonomies are a hierarchical division of things into categories and subcategories

in a tree-like manner. For information technology, taxonomies and ontologies are

ways to store and represent knowledge in a structured, machine readable way. They

only represent hypernym relations, also called is a-relation. To understand what is

meant by such a relation consider the sentence: Red is a color. We can describe

this relationship between red and color as is a(red, color). In this hypernym

relationship, color is the hypernym of red and red is a hyponym of color. Note

that a hypernym can have multiple hyponyms, but a hyponym can only have one

(direct) hypernym. From here on, I will only use the term hypernym relation to

denote such a relation. In CS and NLP taxonomies are often represented as directed

acyclic graphs, where each node stands for a concept or word and each edge stands for

a hypernym relation. In the case of topical taxonomies, a hierarchical organization

of topics, each node stands for a topic instead of a concept or word.

Taxonomy learning generally consists of two main steps: Hypernym extraction and

taxonomy construction. Hypernym extraction is the process of extracting all tuples

of terms (a, b) for which hold is a(a, b) from a given term set [Buitelaar et al.,

2005]. Taxonomy construction uses these extracted relations to organize the terms

into a taxonomy. Some methods assume a given set of terms, other methods start

only with the raw text 1. The latter methods need an additional prior step to identify

relevant terms, which is called term extraction. In clustering-based methods, as we

will later see, hypernym extraction and taxonomy construction fall together into one

step.

Approaches for hypernym extraction can be divided into pattern-based approaches

and approaches based on distributed word representations. Furthermore pattern-

based approaches can be divided into rule-based approaches and statistical ap-

1Methods assuming a given set of terms: de Mantaras and Saitia [2004], Yang and Callan [2009],
Liu et al. [2012]. Methods starting only with the raw text: Fountain and Lapata [2012], Anh
et al. [2014]. This list is not exhaustive and just points to some examples.

3

Chapter 2. Theoretical background and related work

proaches where hypernym extraction is typically formulated as a classification prob-

lem: Given two terms, predict a boolean variable indicating if there is a hypernym

relation between the two terms. Some approaches based on distributed word repre-

sentations use a classification approach too. More recent methods, though, prefer

linear projections combined with a nearest neighbor search. Lastly, approaches

based on distributed word representations can also use clustering to infer hypernym

relations. Methods like classification and linear projections belong to the category of

supervised methods, which means that they need labeled training data. Clustering-

based methods on the other hand do not need labeled data and hence belong to

the class of unsupervised learning methods. TaxoGen, the method I am building

on, uses clustering, thus is an unsupervised method. However, as I will describe in

Chapter 4, I am expanding TaxoGen to not only make use of clustering- but also

classification-based methods. This new method will still not be in need of manually

labeled data, since the labels are extracted in an automatic pattern based way.

2.1 Pattern-based Hypernym Extraction

Hearst [1992] proposes the lexico-syntactic patterns now called Hearst Patterns.

She collects these using an initial seed of patterns and bootstrapping. All patterns

extracted through this process are filtered out if they do not meet the following

three conditions:

1. They occur frequently and in many text genres.

2. They (almost) always indicate the relation of interest.

3. They can be recognized with little or no pre-encoded knowledge.

Using these conditions she collects the following 6 patterns, which have gained a lot

of attention and are frequently used today:

1 . NP such as {NP,}∗ {or | and} NP

2 . such NP as {NP,}∗ {or | an)} NP

3 . NP{ , NP}∗{ ,} or other NP

4 . NP{ , NP}∗{ ,} and other NP

5 . NP{ ,} i n c l u d i n g {NP,}∗ {(or | and)} NP

6 . NP{ ,} e s p e c i a l l y {NP,}∗ {or | and} NP

Alfarone and Davis [2015] build on Hearst Patterns by first using these to extract

initial hypernym relations. They further search for more hypernym relations by

using the NPs extracted through Hearst Patterns and what is known as the string

4

Chapter 2. Theoretical background and related work

subsumption method. The string subsumption method can discover hypernym rela-

tions encoded in a single NP. Consider the term machine learning. We can remove

the modifier machine such that we get the more general term learning. Using this

evidence we can infer the hypernym relation is a(machine learning, learning).

String subsumption extracts hypernym relations by isolating the heads of NPs or

MWEs from their modifiers. Alfarone and Davis filter all extracted relations based

on the frequency of their occurrence to improve precision. They then perform open

relation extraction to calculate the similarities between the previously extracted NPs

based on the number of their shared relations. Finally using this similarity score to

recursively cluster the NPs, they correct wrong relations in the taxonomy and infer

new ones.2

Snow et al. [2005] use a semi-supervised approach. They collect hypernym relations

from WordNet and look for sentences containing both terms of a relation in a corpus.

These sentences are assumed to express the hypernym relation between the two

terms. For all of these sentences they extract features based on the dependency

path between hypernym and hyponym and use it to train a hypernym classifier

greatly increasing recall over the before discussed purely rule-based methods.

Navigli and Velardi [2010] automatically extract definitional sentences with a clas-

sifier. They then generalize these definitional sentences to star patterns. Consider

the following example: In *, a <TARGET> is a * Here the first star denotes any

domain and the second star denotes the hypernym of <TARGET>. The extracted def-

initional sentences are then grouped into clusters according to the star pattern they

belong to. Finally, for each star pattern a Finite State Automaton, which is able

to process all sentences in it’s group, is constructed. A new tuple of two candidate

terms then gets classified as a hypernym relation if one of the Finite State Automata

is able to process it.

Grefenstette [2015] trains a hypernym classifier using features based on patterns

extracted with the string subsumption method and a number of frequency measures.

These include term frequency, document frequency, the frequency of terms occurring

in the same sentence and the frequency of terms occurring in the same document.

With such a seemingly simple approach he won the SemEval 2015 Task 17 Bordea

et al. [2015] where one has to structure a given set of terms into a taxonomy.

2I mainly discuss clustering-based methods in section 2.3. This approach appears under the
pattern-based methods because the focus here lies on the string subsumption method.

5

Chapter 2. Theoretical background and related work

2.2 Embedding-based Hypernym Extraction

A distributed representation of a word, also called word embedding, is a vector of

real numbers encoding syntactic and semantic properties of the word. Although

the idea for distributed word representations has been known for several decades, it

has gained most of its popularity since [Bengio et al., 2003] and even more so since

[Mikolov et al., 2013]. Today distributed word representations are a tool so popular,

that they are used by most approaches in almost all areas in NLP. I will describe

some specific methods to generate such representations later in section 4.1. Most

approaches for hypernym extraction today are embedding-based. In the following,

I will discuss some of the most important embedding-based approaches.

[Yu et al., 2015] train embeddings specifically for hypernym extraction. They define

a hypernym and a hyponym embedding for each term in their vocabulary. The loss

function of the neural net generating the embeddings then enforces the following

three properties:

Let x be a hypernym of y and z. Let x1 and x2 be additional hypernyms.

1. The hypernym embedding of x is similar the to hyponym embedding of y.

2. The hyponym embeddings of y and z are similar.

3. If x1 and x2 share hyponyms their hypernym embedding should be similar.

Yu et al. then train a SVM that takes as input the concatenated embeddings of

two terms and the distance between them to predict if this tuple of terms is in a

hypernym relation.

The approach of Kruszewski et al. [2015] is based on the inclusion hypothesis, ac-

cording to which a hyponym tends to only appear its hypernyms contexts. Building

on this hypothesis they derive boolean vectors, vectors containing 0s and 1s, from

word embeddings by mapping all values in a vector that are close to 1 to 1 and all

values that are close to 0 to 0. The idea being that if a value in the hyponym’s

vector is active, thus close 1, the vector of its hypernym must also be active at this

place, thus, at that place, there must also be a 1. They then train a SVM that takes

the concatenated boolean vectors of two terms as input and outputs a prediction if

there is a hypernym relation between them.

During the last years, more and more methods relying on linear projections have

been proposed. Constructing a linear projection means abandoning the classification

approach and instead reformulating the problem as a regression problem. Given a

word vector, find a transition matrix that projects the word to where its hypernym

6

Chapter 2. Theoretical background and related work

most likely is in the vector space. After the projection has been performed, find

the best match with a nearest neighbour approach using the Euclidean distance.

Fu et al. [2014] pioneered this approach by proposing a piecewise linear projection.

A hypernym relation between hypernym x and hyponym y is represented by their

offset x-y. Based on this representation they cluster all given hypernym relations

into groups and then train a linear projection for each of the clusters.

Yamane et al. [2016] further develop this approach by jointly learning the clusters

and projections. During training, each new pair of terms first gets assigned to a

cluster using a similarity score, that measures how good the current projection ma-

trix of the cluster predicts the hypernym of the new pair, when given the hyponym

of the new pair. The cluster with the highest similarity score gets the new training

pair and the cluster’s projection matrix gets updated. If the similarity score remains

below a certain threshold for all the clusters, then a new cluster is created for the

pair. While Fu et al. [2014] used no negative samples for the projection learning,

Yamane et al. [2016] generate negative samples during each learning process. They

define a loss function for projection learning that penalizes projections near the neg-

ative samples. Ustalov et al. [2017] further explore negative sampling for projection

learning by making use of reversed hypernym relations and synonyms, which are by

definition guaranteed to be negative samples.

At the SemEval-2018 Task 9, where goal is to extract hypernym relations, Bernier-

Colborne and Barriere [2018] won by combining a pattern-based approach with

linear projections. For the pattern-based part they used Hearst patterns and the

string subsumption method. To increase the recall they used a new set of patterns

designed to identify cohyponyms. Each extracted hypernym relation then got a

frequency-based confidence score. For the projection learning they used a fixed

number of projections (24) and soft clustering instead of hard clustering, meaning

that a relation doesn’t belong to exactly one cluster but instead has a distribution

over clusters it belongs to. The confidence scores of both of their subsystems are

then fed into a weighting function to compute a final confidence score.

There have also been approaches to hypernym extraction that not only embed words

but the relation as a whole. Anh et al. [2016] generate a hypernym embedding with

the following method: They take examples of hypernym relations from WordNet and

extract sentences expressing these relations from the Wikipedia corpus. For each of

these sentences they create a triple consisting of the hyponym, the hypernym and

the text in-between. The hyponym, hypernym and the words in the text in-between

are all encoded with one hot encoding3. A neural network gets the hyponym and the

3A one hot encoding is a vector of 0s and 1s with the dimension of the input texts length. For a

7

Chapter 2. Theoretical background and related work

text in-between as input and has to predict the hypernym. Anh et al. then extract

the weights of the hidden layer and use them to embed hypernym relations. In the

final setting, a SVM takes as input the embedded hyponym, hypernym and their

difference, to account for the context in-between in order to predict if a hypernym

relation exists for this tuple.

There has been doubt if classifiers taking distributional word representations as in-

put really learn inference relations or if they just memorize typical hypernyms. Levy

et al. [2015] test this hypothesis systematically over several distributed word rep-

resentations and classifier inputs based thereon. Specifically, they test embeddings

using the popular Skip-Gram model as well as PPMI and SVD representations. As

classifiers they test a SVM and a logistic regression classifier with 4 different inputs:

the concatenation of hypernym and hyponym; the difference between hypernym and

hyponym; only the hyponym as input; and only the hypernym as input. The per-

formance of only feeding the hypernym to the classifiers is shown to be almost as

good as using both hypernym and hyponym as input for the classifiers. This shows

that when using such a setup, the classifier does not look much at the hyponym

information and mostly just memorizes hypernyms. Chen et al. [2018] use an ap-

proach specifically for finding hypernym relations not mentioned in the text. For

a hyponym x and a hypernym y they train an autoencoder taking the input x and

producing the output x-y. They avoid learning a mapping directly to the hypernym

to increase generalization and by that avoid the above described criticism.

2.3 Taxonomy Construction

If hypernym extraction and taxonomy construction are separate processing steps and

thus hypernym relations have already been extracted, then taxonomy construction

is typically formulated as a minimum cost flow problem. A graph is constructed by

interpreting extracted hypernyms and hyponyms as nodes and linking them with

edges. Each edge gets a score indicating the system’s confidence in the hypernym

relation. Then, a search for the graph with the overall minimum cost is conducted,

where low confidence is interpreted as high cost and high confidence is interpreted

as low cost. For more detailed descriptions and different variations of this approach

see Kumar et al. [2001], Woon and Madnick [2009] and Fountain and Lapata [2012].

Going forward I will focus on methods based on clustering.

Clustering-based methods for taxonomy learning typically merge hypernym extrac-

given word it has 1s at every place or dimension where that word appears.

8

Chapter 2. Theoretical background and related work

tion and taxonomy construction into one step. Hierarchical or recursive clustering

generates a taxonomy structure containing hierarchical, thus hypernymic, relations

without extracting them explicitly in a separate step.

de Mantaras and Saitia [2004] compare conceptual clustering, agglomerative clus-

tering and bi-section-k-means clustering for taxonomy construction. In conceptual

clustering a set of attributes is extracted for each term. The task then is to find

terms whose attributes are included in the set of attributes of other terms. This

implies that the second term is more general and higher up in the taxonomic hi-

erarchy. Hierarchical agglomerative clustering is a bottom-up clustering technique.

Every term starts in its own cluster. Then in each step the two most similar clus-

ters are merged. For a more elaborate explanation of hierarchical agglomerative

clustering, see section 4.2. In bi-section-k-means clustering, all data points are first

clustered using standard k-means. Then the cluster with the highest variance gets

selected and is split into two clusters by k-means. This process repeats until the

desired number of clusters is reached. It can thus be seen as a form of divisive

hierarchical clustering. In the evaluation of de Mantaras and Saitia [2004], formal

concept analysis produces the best results but the term representations do not have

the quality of today’s embeddings. So which clustering algorithm performs best

today might be quite different.

Yang and Callan [2009] perform incremental clustering using a wide range of in-

formation to generate the feature vector. They use the co-occurrences of words

measured by PMI, features based on syntactic dependency paths, features based on

lexico-syntactic patterns and other features, even including Google search results.

Using the resulting feature vectors Yang and Callan follow an incremental cluster-

ing approach. Given a term to start with, the method adds terms one by one to

the taxonomy, each time creating a new partial taxonomy and choosing the rela-

tion that maximizes two criteria, minimal evolution and abstractiveness, in a joint

model. According to the criterion of minimal evolution the best partial taxonomy

that includes the new term is the one with minimal added information. The crite-

rion of abstractiveness says that objects on the same taxonomy level have a similar

amount of abstractiveness, meaning they occupy a similar place on a spectrum be-

tween purely physical and more non-physical objects. Terms on the same level thus

need to have similar characteristics. The method finishes when all terms have been

added and the partial taxonomy thus becomes a full taxonomy.

Liu et al. [2012] use an agglomerative clustering method called bayesian rose tree.

In this method, a tree gets constructed using the three operations join, absorb

and collapse. They start out, however, not with a corpus, but with a given set of

9

Chapter 2. Theoretical background and related work

terms. To construct a context for each given term, they thus search a knowledge

base for relevant concepts and use the top results of search engine queries. Using

frequency- and distribution-based measures, a weight score is calculated for each

word in the constructed context. These word scores then are used to produce the

feature vector, which is turn fed to the clustering algorithm.

10

3 TaxoGen

This thesis focuses on improving TaxoGen, which also relies on hierarchical clus-

tering. In the following I will describe this method in detail. Zhang et al. [2018]

developed TaxoGen to construct topical taxonomies. This means that each node

in the taxonomy tree represents a topic instead of a single word. A topic in this

context is a set of semantically coherent terms. For a given root node and a given

number of clusters per level, TaxoGen generates the taxonomy in a recursive top

down process. It stops when either no unassigned terms are left or when a maxi-

mum depth, specified beforehand, is reached. The algorithm is made up of two main

components: adaptive spherical clustering and local embeddings. In the following I

will describe these two main components and how they work together.

3.1 Adaptive Spherical Clustering

For a given topic C, the goal is to divide it into k semantically coherent subtopics

S1 to Sk. The k-means algorithm from Hartigan and Wong [1979] provides an

easy way to accomplish this. For a given set of data points and the number of

clusters k it divides the data points x1 to xn into k clusters1 such that the sum of

the cluster’s variances is minimized. This is equivalent to minimizing the sum of

squared Euclidean distances from the cluster center. A cluster center µ is defined

as the arithmetic mean of all data points belonging that cluster. k-means thus

implicitly measures distances of data points with a Euclidean metric. To quantify

semantic similarities in the embedding space, however, the cosine distance has proven

to be much more useful than the Euclidean distance for NLP tasks. Zhang et al.

thus choose spherical k-means clustering introduced by Dhillon and Modha [2001]

which relies on cosine similarities instead of Euclidean distances.

1In the context of the TaxoGen-method a cluster represents a subtopic. Therefore, I will treat
the two words interchangeably.

11

Chapter 3. TaxoGen

Formally we can define the objective function of the k-means algorithm as

arg min
k∑
i=1

∑
x∈Si

‖x− µi‖2 (3.1)

where ‖x − µ‖2 denotes the squared Euclidean distance, also called L2-norm, for

the data point x and the cluster center µ. Accordingly the objective function of the

spherical k-means algorithm is defined as

arg min
k∑
i=1

∑
x∈Si

cos-dist(x, Si) (3.2)

where cos-dist(x, S) denotes the cosine distance between the data point x and the

mean direction of the cluster S. The mathematical notation here shows us how

the objective functions of the two algorithms only differ in what metric they use to

calculate distances.

Not all terms in C necessarily belong to a subtopic. Some terms probably belong to

the topic C itself. Thus, in TaxoGen, terms are assigned a representativeness score

for the subtopic they were clustered into. Those terms which are not representative

of the topic are assumed to be too general and are pushed up to the parent topic.

That is how the topic C and every other topic gets its members: not by getting terms

assigned directly but by child topics pushing up terms to the parent. Pushing up

such general terms has the additional benefit of clearing the boundaries between the

subtopics since such terms might fall in-between different topics and thereby blur the

topic boundaries. Thus, the adaptive part of the adaptive spherical clustering speci-

fies the iterative process in which a set of terms is clustered into subtopics, followed

by pushing up general terms. The clustering and pushing-up process then starts

again with the non-general (and thus, not-pushed up) terms. This is repeated until

no more general terms are found. Iterative clustering and pushing up general terms

is a self-reinforcing process. Clearer topic boundaries lead to a better partitioning of

the topics, which increases the quality of the topic representativeness scores, which

in turn again leads to clearer boundaries by pushing up non-representative terms.

3.2 Representativeness Score

The central problem now becomes how to measure the representativeness of a term

t for a subtopic Sk. Zhang et al. assume that a term, representative of Sk, appears

frequently in Sk but rarely in its sibling topics S\{Sk}. Based on this assumption

12

Chapter 3. TaxoGen

they consider two factors making up representativeness:

Popularity: If t is representative of Sk then it appears frequently in Sk.

Concentration: If t is representative of Sk then it is more relevant to Sk than to its

sibling topics S\{Sk}.

Notice that to describe the relevancy of a term to a document in a document collec-

tion there already are scores like TF-IDF and BM25. They additionally assume that

these two factors have conjunctive conditions, and thus define representativeness as

r(t, Sk) =
√

pop(t, Sk) ∗ con(t, Sk) (3.3)

where r(t, Sk) denotes the representativeness of t for Sk, pop(t, Sk) the popularity

of t in Sk and con(t, Sk) the concentration of t in Sk. To measure these two factors

they create a subcorpus for each subtopic. The entire corpus is denoted by the

document collection D. A subcorpus that belongs to the subtopic Sk is denoted

by Dk accordingly. The membership of a document is determined by summing up

all IDF scores per subtopic for each document and then choosing the subtopic for

which the document has the highest sum of IDF scores. The popularity of t in Sk,

pop(t, Sk), then is calculated as the smoothed and normalized frequency of t in the

documents Dk.

pop(t, Sk) =
log (tf(t,Dk) + 1)

log tf(Dk)
(3.4)

tf(t,Dk) denotes the frequency of t in Dk and tf(Dk) denotes the total number of

tokens in Dk. The concentration score of t in Sk is calculated as the terms normalized

relevance to Dk.

con(t, Sk) =
exp (rel(t,Dk))

1 +
∑K

j=1 exp (rel(t,Dj))
(3.5)

We interpret all documents in Dk as one concatenated pseudo-document. rel(t,Dk)

then denotes the relevance of term t to the pseudo-document Dk. This enables us

to use the already existing relevance scores for terms in documents. Zhang et al.

choose the Okapi BM25 score from Robertson et al. [1995]. The score describes

the relevance of words in a query vector q to a document Dk. We can view the

Okapi BM25 score as a version of TFIDF where the term frequency is additionally

normalized to account for different document lengths. It is computed as follows:

BM25(qi, Dk) =
n∑
i=1

IDF(qi) ∗
tf(qi, Dk) ∗ (k1 + 1)

tf(qi, Dk) + k1 ∗ (1− b+ b ∗ |Dk|
avgdl

)
(3.6)

13

Chapter 3. TaxoGen

qi is the i-th word of the query vector q. IDF(qi) is the inverse document frequency

of qi in D, |Dk| is the length of Dk in words and avgdl is the average document

length in D. k1 and b are free parameters.2 When applying this score to TaxoGen

we interpret the query vector q as the term whose relevance for the document Dk

we want to calculate. Since in the context of TaxoGen multiword expressions are

concatenated to one single term, the query vector only consists of a single term.

Thus we can simplify the equation to

BM25TaxoGen(t,Dk) = IDF(t) ∗
tf(t,Dk) ∗ (k1 + 1)

tf(t,Dk) + k1 ∗ (1− b+ b ∗ |Dk|
avgdl

)
(3.7)

where t denotes the term in question.

3.3 Local Embeddings

Zhang et al. use the Skip-Gram algorithm from Mikolov et al. [2013] to compute

embeddings for terms. The Skip-Gram model employs a neural network with one

hidden layer to predict the most likely context words for a given input word. Specif-

ically, the given word is represented with a one-hot-encoding (a binary array, unique

for each word in the vocabulary). For each position in the given context window,

which is typically 2 (the two words before and the two words after the given word)

the neural network produces a probability distribution. This probability distribution

encodes how likely it is for each word of the vocabulary to appear at that position in

the context window. During training this context window is slid over each sentence

and at each position of the window the network has to predict the context words for

the given center word. To get the actual word vectors after the training, the weights

between input layer and hidden layer are extracted and the dot product with each

word’s one hot vector representation is calculated. In short, the embedding vector,

a word gets, when using the Skip-Gram algorithm, encodes in which local contexts

the word typically occurs.

Just using one globally trained embedding model has the disadvantage that at lower

levels of the taxonomy, terms are very close to each other in the vector space and

it becomes difficult to further divide term clusters into meaningful subclusters. For

this reason Zhang et al. propose to train a local embedding model for each topic

or node respectively on a subcorpus extracted for that topic. This helps to get fine

grained representations of terms that reflect minor differences in usage from each

2k1 is normally given a value in the interval [1.2, 2.0] and b is usually set to 0.75.

14

Chapter 3. TaxoGen

other at the lower levels of the taxonomy. The clustering is then performed on the

local embedding model.

The only question left now is how to get the set of documents De
k

2 that make up

the subcorpus of the topic Sk. Zhang et al. employ two methods: clustering-based

and retrieval-based. For the clustering based method Zhang et al. simply sum up

all TFIDF scores of terms in a document per cluster, to compute a cluster score per

document. They then assign each document to the cluster, which has the highest

score in that document. For the retrieval based method, Zhang et al. compute a

document embedding using a TF-IDF weighted average of the document’s terms.

Let T denote the set of terms {t1...tn} in the document De
k. Then E(Dk), the

embedding of document Dk, is calculated as

E(De
k) =

∑
1≤j≤n TF-IDF(tj, D

e
k) ∗ E(tj)

n
(3.8)

where TF-IDF(tj, Dk) denotes the TF-IDF-score of tj for De
k and E(tj) denotes the

embedding vector of tj. This means that the TF-IDF-score is used as a scalar by

which the term embeddings is multiplied. They then compute the average direction

of each topic by averaging the direction of its cluster members. Finally Zhang et al.

collect the top m documents with the most similar direction to the topic’s direction.

The retrieval-based method is only used when the clustering-based method does not

produce enough documents for a cluster. Note two important points: (1) For the

extraction of documents belonging to a topic, the global embeddings (not the local

embeddings) are used. (2) The search for documents belonging to a topic is always

done globally and not only in the corpus of its parent topic.

3.4 TaxoGen Implementation

When reimplementing the TaxoGen-Method, I found that the exact reimplemen-

tation of the method described above actually yields results quite different from

the ones reported in the paper. Some differences can probably be explained through

implementation-specific details. For example, choosing a different implementation of

the Skip-Gram algorithm can lead to slightly different embeddings, which influences

how the terms are clustered into topics. Different topic clusters lead to different

subcorpora extracted for the topics which in turn lead to different representative-

ness scores. Thus, rather small differences can trigger a snowball effect. However, I

2I use the superscript e here to differentiate the subcorpus extracted for the local embedding
training from the subcorpus extracted to calculate the representativeness score.

15

Chapter 3. TaxoGen

think there is at least some degree of similarity to expect between the results of the

different implementations.

Therefore, when seeing these differences in the results, I started looking into the

source code of the original TaxoGen implementation and found significant discrep-

ancies between the descriptions in the publication and the implementation. The

following is my own interpretation and formalization of those parts I found in the

source code which are different from the descriptions in the publication or do not

appear in it.

In the implementation it is not the term frequency, that is used to calculate the

popularity score. Instead the document frequency is used. Additionally, no nor-

malization is applied to the popularity score as described in the paper. Thus, the

popularity for a given term t belonging to a topic Sk is just calculated as

pop(t, Sk) = log (df(t,Dk) + 1) (3.9)

where df(t,Dk) denotes the document frequency of t in the corpus Dk.

The implementation of the BM25 score also differs from the “textbook defintion”.

Normally, for the document length, the number of tokens in a document is counted.

In the implementation, the number of terms appearing in a document is used instead

of the document length. Additionally, Zhang et al. replace the IDF in the BM25

score with a normalization of the document frequency. Specifically, they calculate,

what they call in the source code, a df-factor as

df-factor(t, Sk) =
log(1 + df(t, Sk))

1 + dfmax(t)
(3.10)

where dfmax(t) denotes the maximum document frequency of t in any of the pseudo

documents D1 to Dk. Finally, to get the BM25 scores into a more useful range they

multiply the resulting score by 3. Therefore, the BM25 score is implemented as

BM25Imp(t,Dk) = 3∗df-factor(t, Sk)∗
tf(t,Dk) ∗ (k1 + 1)

tf(t,Dk) + k1 ∗ (1− b+ b ∗ |Dkterms
|

avgdlterms
)

(3.11)

where |Dkterms| and avgdlterms denotes the document length and average document

length, where only terms and not all tokens are counted.

When the entire representativeness score has been calculated, it is normalized by

dividing the score for term t in topic Sk by the sum of the representativeness scores

16

Chapter 3. TaxoGen

for its sibling topics.

rnorm(t, Sk) =
r(t, Sk)∑K
j=1 r(t, Sj)

(3.12)

Note that adding this normalization is not equal to leaving out the normalization

of the popularity score, since: (a) the normalization of the popularity score in (3.4)

is done by dividing by the total number of tokens in Dk whereas the normalization

in (3.12) is done by dividing by the sum of representativeness scores for S. (b) This

means that the already normalized concentration score is normalized again. This

normalized representativeness score rnorm is calculated for the topic the term belongs

to and for all its sibling topics.

As a next step, the Kullback-Leibler divergence is applied. The Kullback-Leibler

divergence, also called relative entropy, is a measure expressing how two probability

distributions differ from each other. Normally, it is used to compare an empirically

measured distribution against a reference distribution, often the a priori expected

distribution. For discrete probability distributions, the Kullback-Leibler divergence

is defined as follows:

DKL(P‖Q) =
∑
x∈χ

P (x) log

(
P (x)

Q(x)

)
(3.13)

P and Q are discrete probability distributions over χ, the set of observations. The

‖ in this case is simply used to emphasize that the order of the arguments matter,

because the Kullback-Leibler divergence is an asymmetric measure. When this mea-

sure is applied to compare an empirically measured distribution against an expected

distribution, it can be interpreted as the expected sum of logarithmic differences be-

tween P and Q.

Zhang et al. use the Kullback-Leibler divergence to measure how much the nor-

malized representativeness scores rnorm differ from the scores that would result from

a totally random distribution of terms over documents. They define the expected

distribution as Q(x) =
1

|S|
where |S| is the number of clusters, which in this case

is always 5. This means that Q(x) is always 0.2. Therefore, for the specific case of

TaxoGen, the Kullback-Leibler divergence can be rewritten as

DKL(rnorm‖Q) =
∑
x∈χ

rnorm(x) log

(
rnorm(x)

0.2

)
(3.14)

Finally, this resulting divergence is used as a score to decide which terms are general

and should be pushed up to the parent topic. Note, that in the paper the criterion

to pushing up a term is its representativeness score. In the implementation, the

17

Chapter 3. TaxoGen

criterion is how much the representativeness score of a term in a topic positively

deviates from its sibling topics.

Zhang et al. describe a retrieval-based method and a clustering-based method in

the paper to extract a subcorpus for local embedding training. I could not find an

implementation of those methods in the source code. Instead they employed the fol-

lowing method to extract a subcorpus: For the m terms closest to the cluster center

(using cosine distance), all documents in which those terms appear are collected.

In the following chapters of the thesis, when I use the term TaxoGen, I refer to the

implemented version of TaxoGen, not the version described in the publication, since

the implemented version is the one that actually produced the results reported.

3.5 Summary and Limits

In summary, TaxoGen is an unsupervised taxonomy learning algorithm. It creates

the taxonomy recursively in a top-down manner. On each level it clusters a term set

into a given number of topics and extracts a relevant subcorpus for each topic. Terms

are scored based on popularity and concentration. Terms with a representativeness

score lower than a given threshold are assumed to be too general for their topic and

are pushed up to the parent topic. The clustering, scoring and pushing up of general

terms repeats until no more general terms are found. For each topic, separate local

embeddings are trained, so that even in subtopics of the lower levels of the taxonomy,

fine distinctions between different concepts can be identified. However, TaxoGen has

limitations and there is room for improvements on several fronts:

1. No lemmatization of candidate terms is performed, which leads to terms often

appearing in their singular form and in their plural form in the taxonomy.

2. No domain term extraction is performed. The absence of a filter for domain

terms shows in the results of TaxoGen. Although one could argue that pushing

up general terms on the top level has a similar effect as filtering non domain

terms.3

3. The number of subtopics for each topic is predefined, but a flexible number of

topics would allow to better approximate the underlying semantic structure of

how the terms are hierarchically related.

4. TaxoGen uses the Skip-Gram model to produce word embeddings. While

3Probably, non-domain terms are evenly distributed across topics. This means they are the first
to get pushed up into a top level node that is not considered as a part of the taxonomy.

18

Chapter 3. TaxoGen

this technique has become very popular for finding and extracting semantic

similarities, more sophisticated embeddings techniques have been developed

since its publication.

5. It relies on spherical k-means clustering, which like all clustering techniques

based on k-means tends to produce even cluster sizes. While this behaviour

might be desirable for a balanced taxonomy tree there is no reason to assume

that candidate terms are evenly distributed across topics and that similar

cluster sizes should be produced.

6. TaxoGen is susceptible to terms that often appear with each other but have

a different meaning from each other. For example, error analysis shows that

the terms anonymity and cryptography often are the top candidates as labels

for the same cluster. However, the best label for a subtopic of anonymity is

different from the best label for the subtopic of cryptography.

19

4 Methods - Building on TaxoGen

I propose modifications to TaxoGen on three different levels, specifically on the

embeddings-level, the clustering-level and the choice of labels for topics in the tax-

onomy. In the following sections I motivate and explain these changes.

4.1 Embeddings

On the embedding level I propose to test different embeddings, namely GloVe and

ELMo embeddings.

4.1.1 GloVe Embeddings

GloVe, introduced by Pennington et al. [2014], is a technique to produce word em-

beddings using global contexts. First, a global co-occurrence table, which captures

for each word how often it occurs in the context of each of the other words of the

vocabulary, is constructed. This matrix is converted to a matrix of co-occurrence

probabilities expressing how probable it is for a word to occur in the context of

a given other word. Using this matrix, GloVe trains the word vectors in such a

way that the dot product of the embeddings of two words is as close as possible to

the logarithmic probability of the words occurring in each others context. GloVe

embeddings differ from embeddings created using the Skip-Gram algorithm in that

they explicitly model global co-occurrences, and thus global contexts, as opposed to

Skip-Gram modeling local contexts.

4.1.2 ELMo Embeddings

ELMo, introduced by Peters et al. [2018], is a method to produce context-dependent

embeddings. In context-dependent embeddings, a word or string of characters does

not just have one fixed vector representation. Instead, a word gets a different vector

representation depending on the context it appears in. Formulated differently, in

20

Chapter 4. Methods - Building on TaxoGen

traditional embeddings, the vector representation is a function of only the given in-

put word. In context dependent embeddings, the vector representation is a function

of the given input word and the context it appears in. ELMo considers a sentence

as the word’s context. These word embeddings are produced using a bidirectional

language model. A bidirectional language model is made up of two RNNs that walk

through text (in this case a sentence) in opposite directions and predict the most

probable next word based on previous evidence. The previous evidence - in this case

- is constituted by the words already walked through. For each word the hidden state

after processing that word is extracted as its vector representation. For ELMo, two

bidirectional language models are stacked upon each other. The overall embedding

of a word is calculated as a weighted sum of the embeddings in the language models.

The standard version of the ELMo embeddings, which I use for this thesis, has 1024

dimensions.

Since calculating ELMo embeddings is computationally much more costly than cal-

culating Skip-Gram or GloVe embeddings, it is infeasible to recursively train new

ELMo embeddings on every subcorpus extracted in TaxoGen. Therefore, I employ a

different method to get ELMo embeddings fine-tuned to specific subcorpora. When

using ELMo embeddings, for each instance of a term a different embedding is cal-

culated. To collapse all of the embeddings for the instances of a term into one

embedding that can be used for adaptive spherical clustering I calculate the average

embedding of all occurrences of the term in the current subcorpus. Formally, let

E(t, Sk) denote the embedding of term t in subcorpus, Sk. Let tj,Sk
denote the j-th

instance of t in Sk. Then E(t, Sk) is given by:

E(t, Sk) =

∑n
j=1E(tj,Sk

)

n
(4.1)

4.1.3 Why Test these Embeddings

Skip-Gram, GloVe and ELMo embeddings are all fundamentally different from each

other. The first relies on a shallow neural network to predict contexts of words

the second on global co-occurrence statistics and the third on two stacked language

models. The use of global co-occurrence statistics by the GloVe embeddings is

attractive in the case of hypernym identification. The main reason for this being,

the distributional inclusion hypothesis introduced by Geffet and Dagan [2005]. It

states that the contexts in which a hypernym appears tends to include the contexts

in which its hyponyms appear. Since such context relations are global, they are more

probable to be captured by GloVe embeddings than by Skip-Gram embeddings. The

21

Chapter 4. Methods - Building on TaxoGen

use of ELMo embeddings is just motivated by their superior performance in other

tasks including the task to identify textual entailment, which is closely related to

identifying hypernymy [Peters et al., 2018].

4.2 Clustering

As an alternative to spherical k-means clustering, I test two agglomerative clustering

techniques, which better allow for varying cluster sizes.

All agglomerative clustering techniques follow the same basic method: In the begin-

ning, each data point is viewed as its own cluster. The distances between each pair of

clusters is calculated. Then, the two clusters closest to each other are merged. This

calculation of cluster distances and merging of the two closest clusters is repeated

until only one cluster containing all data points is left. This procedure creates a

hierarchy of clusters, with the top cluster containing all data points at the top, the

two clusters that were merged into the top cluster right beneath, the four clusters

that were merged into the two clusters one level deeper and so on. To get the desired

number of clusters, one simply traverses down the hierarchy to the level where the

desired number of clusters exists.

The question that remains and gives rise to different versions of agglomerative clus-

tering is how to measure cluster similarity. There are two parameters to be chosen:

affinity and linkage. Affinity defines the distance metric. This can be any kind of

distance like the Manhattan distance, the Euclidean distance or the cosine distance.

Linkage defines which data points of a cluster are used to calculate similarity. Mini-

mum or single linkage calculates clusters distances between pairs of clusters by using

only the two data points (one from each cluster) closest to each other. Complete

linkage on the other hand calculates cluster distances by using only the two data

points (one from each cluster) furthest apart. Average linkage calculates the distance

from each data point of one cluster with each data point of the other cluster and

defines their similarity using the average distance. Ward clustering is a special case

of agglomerative clustering. It does not minimize the distance between two clusters.

Instead, it minimizes the within-cluster variance, like the k-means algorithm. In

other words: they have the same objective function.

After testing all possible combinations of linkage and affinity on a small sample

data set I chose to test complete linkage with cosine similarity as affinity and Ward

clustering on TaxoGen.

22

Chapter 4. Methods - Building on TaxoGen

4.3 Label Score

To find a label for a topic in TaxoGen, the mean direction of the topic is calculated

and its terms are sorted according to their cosine similarity to the topic’s mean

direction. To better ensure that topic labels are hyponyms of each other, I instead

propose a label score that uses information from embeddings as well as from word

distributions over documents. It is made up from three elements: The cosine simi-

larity between the term and the topic center1, a hyponym classification score and a

hyponym distribution score. The term with the highest score is chosen as the cluster

label. For term t in topic Sk with parent topic C the Label-score L(t, Sk, C) is given

by:

L(t, Sk, C) =
√

cos-sim(t, Sk) ∗ hypoclf(t, C) ∗ inclusion(t, C) (4.2)

4.3.1 Distributional Inclusion Score

The distributional inclusion score aims to capture hyponymy relations and is based

on the distributional inclusion hypothesis from Geffet and Dagan [2005], explained in

section 3.5. A hyponym h of term t tends to occur in a subset of t’s contexts. When

applying this hypothesis on word distributions over documents, one can assume that

h, a hyponym of t, tends to occur in a subset of the documents in which t occurs.

Thus, for a given hypernym t and a candidate hyponym h, one can assume the

following: The higher the ratio between documents containing both t and h and all

documents containing h, the more likely it is for h to be a hyponym of t. Formally

this relation can be expressed as

inclusion(t, h) =
df(h, t)

df(h) + 1
(4.3)

where df(h, t) denotes all documents containing both h and t and df(h) denotes the

document frequency of h.

However, in the scenario of a topical taxonomy like TaxoGen, an entire parent topic

is given, not only a parent term. Thus, the inclusion score should be between the

parent topic C and the hyponym h, which is to be scored. This opens up the question

of how inclusion on a document level of a term by a topic should be measured. A

naive approach could consist of simply collecting all documents in which a term of

cluster C appears in. Such an approach would be susceptible to terms, that barely

made it into the cluster. These terms could enlarge the topic document collection in

1The cosine similarity is mapped to the interval [0,1] for this score.

23

Chapter 4. Methods - Building on TaxoGen

an non-useful manner. Thus, I choose to only include the documents in which the

top n terms of a cluster (by similarity to the cluster center) occur. The inclusion

score inclusion(C, h) for a given hyponym h and its parent topic C can then simply

be expressed as:

inclusion(C, h) =
df(C, h)

df(h) + 1
(4.4)

df(C, h) denotes the number of documents which contain h and at least one of the

top n terms in C.

4.3.2 Hyponym Classification Score

The hyponym score indicates how likely it is that a term qualifies as a hyponym of the

parent topic using classification. It has a range from 0 to 1, with 1 denoting certainty

that the term in question qualifies as a hyponym. The hyponym score is calculated

with a SVM using a radial basis function kernel. Although SVMs are normally

used for binary output, some implementations also make a technique, introduced

by Platt et al. [1999], available which maps the SVM output to a probability via

a sigmoid function. The SVM is trained with hypernym-hyponym pairs. To get

corpus-specific training data without needing to manually create a training set I

employed the following method:

1. Create positive examples by extracting hypernym-hyponym pairs from the

entire corpus using the Hearst Patterns from Hearst [1992], described in section

2.1.

2. Create negative examples by (a) inverting the hypernym-hyponym pairs as

done by Ustalov et al. [2017] and (b) extracting random pairs of NPs from the

corpus and checking if they are not present in the positive examples. Inverting

a hypernym-hyponym pair guarantees a negative example because hypernymy

is an asymmetrical relationship. Extracting two random NPs could erroneously

result in an unseen positive example, but this is very unlikely.

3. Embed the positive and negative samples using the embeddings trained on the

entire corpus (global embeddings).

4. For each example subtract the embedded hyponym from the embedded hyper-

nym to get their distance. This distance represents the sample and constitutes

the feature vector fed to the SVM.

24

Chapter 4. Methods - Building on TaxoGen

5. Train the SVM on the positive and negative samples.

The reason for calculating the difference of the hyponym and the hypernym embed-

ding is to avoid the criticism from Levy et al. [2015] that hypernym classifiers just

memorize typical hypernyms. I described this criticism in section 2.2.

To calculate a hyponym score for a new candidate term, the difference between the

embedding of the parent topic and the embedding of the candidate term has to be

computed and to be given to the SVM.

25

5 Experiments and Results

5.1 Dataset

To keep the results of this thesis comparable to those of the original TaxoGen paper,

it is desirable to use the same corpus as has been used for the testing of TaxoGen.

TaxoGen has been tested with two corpora: The DBLP corpus1 and the SP corpus2.

Since the authors of TaxoGen published their preprocessed version of the DBLP

corpus3, I used their preprocessed DBLP corpus for evaluation. The DBLP corpus

is a large collection of publications in computer science and neighbouring fields. It

contains about 4.3 Mio. publications. The authors of TaxoGen reduced the corpus

to about 1.8 Mio. articles.

5.2 Implementation

The reimplementation is first and foremost an implementation of how TaxoGen

is described in its publication (Zhang et al. [2018]). However, the differences be-

tween publication and implementation and my proposed modifications are included

as modules that can be switched on and off using a configuration file. Since Tax-

oGen needs large corpora as input to work properly, the implementation has to be

efficient regarding space and time complexity. For this implementation, I chose to

move as much processing steps as possible into the preprocessing, since the prepro-

cessing only is run once while the taxonomy generation is run many times. The

preprocessing includes extracting noun phrases as term candidates, lemmatization,

extracting hypernym relations with Hearst patterns, indexing the corpus, calculat-

ing term frequencies per document, calculating document frequencies, calculating

1The website can be found here: https://dblp.uni-trier.de/; Last visited: 24.05.2019
2The website can be found here: https://signalprocessingsociety.org/publications-resources;

Last visited: 24.05.2019
3The preprocessed corpus can be downloaded via a link on the GitHub site, on which the imple-

mentation of TaxoGen is hosted: https://github.com/franticnerd/taxogen; Last visited:
24.05.2019

26

https://dblp.uni-trier.de/
https://signalprocessingsociety.org/publications-resources
https://github.com/franticnerd/taxogen

Chapter 5. Experiments and Results

document lengths, training global embeddings, calculating document embeddings

and training the hypernym classifier. This means that during the actual generation

of the taxonomy no text has to be processed, which makes the taxonomy generation

less space and time consuming.

Two distinct preprocessing pipelines are set up: one starting with the initial raw

corpus downloaded from the DBLP website and one starting with the preprocessed

corpus provided by the authors of TaxoGen. All results in this thesis are produced

with the preprocessing relying on the already preprocessed corpus from the authors

of TaxoGen to enable better comparability. However, for further development it

might be attractive to switch to the preprocessing pipeline starting from the raw

corpus, since it allows to additionally lemmatize terms (including MWEs) and is

simple to expand.

The integration of the ELMo embeddings was not possible as planned and described

in section 4.1.2. The averaging of a term’s embeddings of all occurrences in a

subcorpus took up either too much RAM when loading all necessary embeddings at

once or was too slow when loading one embedding at a time. Thus, for the evaluation

of TaxoGen with ELMo embeddings I did not use any local embeddings, instead I

always used the global embeddings, even at the deeper levels of the taxonomy.

There are several hyper-parameters that need to be set for TaxoGen. The TaxoGen

implementation contains some additional restrictions, also implemented through

parameters. All of those parameter-settings are described in table 3.

Name Description Value
n clusters The number of clusters per level. 5
threshold The threshold to push term up. 0.25/0.35
max iter The maximum number of spherical clustering iterations per

level.
5

max depth The maximum depth of the taxonomy. 4
n expand How many terms near the cluster center should be used to

extract documents for embedding training as described at the
end of section 3.4.

200

n incl How many terms near the cluster center should be used to
collect documents for the topic C in equation 4.4.

10

Table 1: Parameter settings.

The two values for the threshold parameter stand for a threshold of 0.25 for the top

level of the taxonomy and a threshold of 0.35 for all levels below.

27

Chapter 5. Experiments and Results

The code for the reimplementation, building on top of TaxoGen and for the evalu-

ation can be found here: https://github.com/jagol/BA Thesis4

5.3 Evaluation

5.3.1 General Procedure

To separate the effects of the different changes proposed, testing all different combi-

nations of the proposed changes would be desirable. However, this would result in

over 20 versions to evaluate. To limit the number of generated taxonomies, which

have to be evaluated I conducted the following procedure: I first tested TaxoGen

with different embedding versions. I then tested the different clustering algorithms

only with those embeddings that performed best. Lastly, I tested the labeling score

only with the embeddings and clustering algorithm that performed best.

5.3.2 Metrics

It is not an easy question how a topical taxonomy should be evaluated. For this

evaluation, I tried to follow TaxoGen’s evaluation as closely as possible to ensure

comparability. Zhang et al. report a relation accuracy5. The relation accuracy

“aims at measuring the portions of the true positive parent-child relations in a

given taxonomy.”6. But, there are three open questions with this metric:7

1. How do Zang et al. get the information to compute a relation accuracy?

Accuracy in the context of binary classification is defined as:

ACC =
True Positives + True Negatives

True Positives + True Negatives + False Positives + False Negatives
(5.1)

However, when automatically constructing a taxonomy without having a gold

taxonomy, we do not know the number of True Negatives and the number

of False Negatives. It is therefore impossible to calculate a relation accuracy

in this context. I assume that Zhang et al. instead computed the relation

4Last visited: 24.05.2019
5They also report a cluster quality and term coherency. However, I focus on relation accuracy in

this thesis as it the most important metric to measure the quality of taxonomy.
6Zhang et al. [2018]
7I contacted the authors to ask them these questions about their evaluation, but they did not

respond.

28

https://github.com/jagol/BA_Thesis

Chapter 5. Experiments and Results

precision, which is defined as follows:

PRE =
True Positives

True Positives + False Positives
(5.2)

Relation precision only needs the number of True Positives and False posi-

tives, which can be obtained by extracting relations out of the taxonomy and

annotating them.

2. Are these parent-child relations between topics or between terms? A parent-

child relation could denote a relation between a parent topic and a child topic.

Or it could denote a relation between a term in the parent topic and a term

in the child topic. For example, it could denote the relation between the term

with the highest score in the parent topic and the term with the highest score

in the child topic.

3. What are the necessary conditions for a valid parent-child relation? In a nar-

row sense, a parent-child relation could denote a hypernym-hyponym relation.

In a wider sense it could mean, that the child is in some way a subtoptic of

the parent.

To give consideration to all possible interpretations of how TaxoGen was evaluated,

I employ three different metrics:

Hypernym relation precision: This is a term-level metric. For this metric I view

a parent-child relation as a relation between the highest scoring term in the

parent topic and the highest scoring term in the child-topic. The relation is

valid, if the child term is a hyponym of the parent term.

Is-subtopic relation precision: This is a term-level metric too. For this metric I

view a parent-child relation as a relation between the highest scoring term in

the parent topic and the highest scoring term in the child-topic. The relation

is valid, if the child term can be viewed as a subtopic of the parent term. A

subtopic-relation can be a hypernym relation, a meronym-relation or anything

that comes up immediately when the parent topic is discussed.

Is-subtopic relation precision - topic level: This is a topic-level metric. For this

metric I view a parent-child relation as a relation between two entire topics.

Each topic is a set of words. The relation is valid if most terms in the child

topic generally can be viewed as a subtopic of the terms in the parent topic.

In section 6.3 I further discuss these metrics. For each generated taxonomy I ex-

tracted its relations and sampled 100 random relations per metric. For the case of

topic-level relation precision, the taxonomy often contained less than 100 relations.

29

Chapter 5. Experiments and Results

This can happen if there are nodes to whom no terms have been pushed up, because

the no representativeness scores are below the threshold for pushing up terms. If

this was the case, I just used all relations in the taxonomy.

5.3.3 Evaluation Results

Table 2 contains the obtained results and table 3 contains explanatory descriptions.

Hyp-RP Is-sub-RP Is-sub-RP-TL

TP FP Total RP TP FP Total RP TP FP Total RP

TaxoGen - - - 0.775 ? - - - 0.775 ? - - - 0.775 ?

W2V+SPKm (ReImpPub) 2 98 100 0.02 9 91 100 0.09 5 6 14 0.36
W2V+SPKm (ReImpImp) 2 98 100 0.2 35 65 100 0.35 35 16 51 0.69
GloVe+SPKm 7 93 100 0.07 40 60 100 0.4 18 15 33 0.55
ELMo+SPKm 2 98 100 0.02 19 81 100 0.19 14 86 100 0.14
W2V+Ward 6 94 100 0.06 23 77 100 0.23 15 17 32 0.47
W2V+CompL 2 98 100 0.02 18 82 100 0.18 12 18 30 0.40
W2V+SPKm+Hyp 3 97 100 0.03 43 57 100 0.43 37 14 51 0.73
W2V+SPKm+Incl 1 99 100 0.01 39 61 100 0.39 39 12 51 0.76
W2V+SPKm+Hyp+Incl 1 99 100 0.01 40 60 100 0.4 39 12 51 0.76

Table 2:
Evaluation Results.

30

Chapter 5. Experiments and Results

Short name Description
TaxoGen The results reported in the TaxoGen publication [Zhang et al., 2018].

It is not clear which interpretation of a parent-topic relation was de-
ployed by Zhang et al. Therefore, the result is listed in every column,
but with an question mark.

ReImpPub The reimplementation of TaxoGen as it is described in its publication.
The threshold to push terms up is set to 0.0005, since the represen-
tativeness scores are generally much lower if the score is implemented
as described in the publication.

ReImpImp The reimplementation of how TaxoGen including the differences
found.

W2V TaxoGen with Skip-Gram embeddings (named after the alternative
name Word2Vec).

GloVe TaxoGen with GloVe embeddings.
ELMo TaxoGen with ELMo embeddings.
SPKm TaxoGen with Spherical K means clustering.
Ward TaxoGen with Ward clustering.
AvgL TaxoGen with average linkage agglomerative clustering.
CompL TaxoGen with complete linkage agglomerative clustering.
Hyp TaxoGen with the label score only considering center similarity and

hyponym score.
Incl TaxoGen with the label score only considering center similarity and

inclusion score.
Hyp+Incl TaxoGen with the full label score as described in section 4.3.

Table 3: Short name descriptions

As table 2 shows, according to the hypernym relation precision the configura-

tion using GloVe embeddings (GloVe+SPKm) performed best. According to the

is-subtopic relation precision the configuration using only the hypernym classifi-

cation score (W2V+SPKm+Hyp) performed best. And according to the

is-subtopic-topic-level relation precision the configuration using the full label

score and the configuration using only the distributional inclusion score

(W2V+SPKm+Incl and W2V+SPKm+Hyp+Incl) performed best. Comparing the

relation precisions of TaxoGen and its reimplementation including the differences

found (ReImpImp) suggests that the score of 0.775 reported by Zhang et al. actu-

ally refers to a topic level relation precision. Overall the reimplementation scores

lower than the original implementation but the additional labeling score closes the

gap to the original implementation. Possible reasons for these differences in the

results are discussed in section 6.1.

31

Chapter 5. Experiments and Results

*

gaussian_mixture_models
kernel_method

kernel_regression
kernel_principal_component_analysis
linear_discriminant_analysis

kernel_pca
multiple_kernel_learning
relevance_vector_machine

principal_components_analysis
gaussian_mixture_model

named_entities
textual_documents
web_documents

thesauri
semantic_relations

controlled_vocabulary
term_extraction
nlp_techniques
text_corpus

semantic_relation

intelligent_software_agents
crisis_management

collaborative_decision_making
virtual_enterprises
intelligent_agents

knowledge_management_systems
semantic_technologies

ebusiness
agent_systems

agent_technology

dopamine

message_authentication
provably_secure
symmetric_key

message_authentication_codes
public_key_cryptography

key_agreement
mutual_authentication

digital_signature
key_generation

threshold_cryptography

<empty>

class_separability
leave_one_out_cross_validation

classification_accuracies
leave_one_out

real_world_data_sets
classification_error

benchmark_data_sets
uci_datasets

support_vectors
class_labels

log_likelihood
nonparametric_regression

hyperparameters
kernel_density_estimation

penalized
loss_functions

convex_optimization
posterior_distribution

maximum_likelihood_estimation
entropic

learning_rate
neural_network_architectures

elman
neural_network_training

backpropagation
feed_forward
fuzzy_rules

neuro
feedforward

connection_weights

background_subtraction
eigenspace

aams
skin_color

interest_point_detection
model_fitting

active_shape_model
foreground_segmentation

natural_scene
complex_background

backpropagation_algorithm
single_hidden_layer

hidden_layer
sigmoid_function

mlps
multilayer_perceptrons

rbf_networks
perceptrons

recurrent_neural_network_rnn
neuro_fuzzy_systems

neuro_fuzzy
bp_network

neural_network_architecture
network_based_fuzzy_inference_

system_anfis
wavelet_neural_network

anfis
fuzzy_inference_system

adaptive_neuro_fuzzy_inference_
system_anfis

recurrent_networks
learning_rule

neuron
<empty> <empty>

Figure 1:
A part of the taxonomy generated by Skip-Gram embeddings, spherical-k-means

clustering and the full label score (W2V+SPKm+Hyp+Incl).

Figure 1 shows the taxonomy generated by using Skip-Gram embeddings, spherical

k-means clustering and the full labeling score (W2V+SPKm+Hyp+Incl). The top

node is divided into five topics. The obvious odd one out is the fourth topic with

only one term dopamine. This term cannot be seen as general in any way and is an

obvious error. The other four topics on the top level revolve around text processing,

kernel methods and machine learning, intelligent agents and cryptography related

topics. However, there is noise in the topics. For example the topic of intelligent

agents is mixed with e-commerce terms and contains the term crisis management.

The hierarchy of the topics is not as clear as would be desirable. The second topic on

the top level, revolving around machine learning, already contains specific machine

learning methods and not more general terms like machine learning or learning al-

gorithms. Examining the subtopics of the machine learning topic shows that the

32

Chapter 5. Experiments and Results

terms in these subtopics are semantically related but not necessarily more specific.

However, a comparison with the worst performing configuration (ELMo+SPKm)

makes clear how the topics above are coherent to quite a high degree.

*

graph_cut
syntactic_structure
biologically_plausible

neuroevolution
feedforward
palmprint

latent_variables
adaptive_control

augmented_reality_ar
syntactic_information

life_cycle
data_collection

information_sharing
knowledge_sharing
anonymization
personalization
k_anonymity
mediation
publication
expertise

linear_discriminant_analysis_lda
reinforcement_learning_rl

neural_network_nn
web_ontology_language_owl

high_dimensional_feature_space
kpca

kernel_matrix
linear_discriminant_analysis

kernel_trick
random_oracle

frequent_itemsets
existing_solutions

rfid_tags
location_based_services

query_logs
web_search_engines

active_contours
visualization_techniques

taxonomies
semantic_annotations

spontaneous_speech
hopfield_neural_network

rbf_neural_network
rbf_neural_networks
sparse_representation
time_varying_delays

computational_intelligence
word_recognition
multi_task_learning

elliptic_curve_cryptography

Figure 2:
The top level of the taxonomy generated using ELMo embeddings (ELMo+SPKm).

Figure 3:
The top level of the taxonomy generated by the original TaxoGen implementation.

The figure is taken from Zhang et al. [2018].

33

6 Discussion

6.1 Comparison with the TaxoGen Results

The results of the reimplementation of TaxoGen considerably differ from the results

in the original implementation. The TaxoGen reimplementation which includes

the differences found (ReImpImp) clearly yields better results than the TaxoGen

reimplementation that strictly follows the publication’s descriptions (ReImpPub).

Assuming that the relation precision reported in the TaxoGen publication refers to

topic-level evaluation, the reimplementation obtains results that are slightly worse.

Manually comparing the coherency of the individual topics in figures 1 and 3 shows

that the results from the reimplementation (ReImpImp) do clearly not have the

same quality as the results from the original TaxoGen implementation.

This difference in results could have a number of possible reasons: Small imple-

mentation differences of the Skip-Gram algorithm could have a snowball effect like

described in section 3.4. Other implementation-specific details, like the exclusion of

terms in a cluster if they are not contained in the local embedding model, might

also play a role in the generation of different results between the implementations.1

However, it is not likely that such small differences in the implementation would

produce such a different outcome. It is also possible that there are hidden errors in

the code of the reimplementation. However, the key parts of the system are unit-

tested and therefore probably do not contain errors. A last possibility is that there

are more differences between the original implementation of TaxoGen and how it

is described in the paper. My analysis of the implementation concentrated on the

adaptive spherical clustering, local embedding training and calculation of the rep-

resentativeness score of TaxoGen but not, for example, on how data is loaded or

how it is passed between the different system modules. Future efforts to improve

the reimplementation could focus on these other parts of the system, which are not

at the core of the proposed system but may nevertheless be essential for the kind of

results produced.

1It is possible that a term does not have a local embedding. This happens if the corpus extracted
for local embedding training does not contain the term in question.

34

Chapter 6. Discussion

6.2 Comparison between Different Versions

On the embedding level, the Skip-Gram embeddings performed best. The GloVe

embeddings performed better according to hyponym and is-subtopic relation pre-

cision but worse in the topic-level evaluation. The ELMo embeddings performed by

far the worst showing that the higher dimensionality could not make up for the lack

of local embeddings. On the clustering level, spherical k-means clustering performed

better than the agglomerative clustering techniques. This shows that enforcing sim-

ilar cluster sizes, as done by k-means and spherical k-means clustering, is not a

problem. Instead it has a positive effect. From the agglomerative clustering tech-

niques ward clustering performed better than complete linkage. These results are

surprising. The cosine distance has proven to be a superior distance measure than

the euclidean distance for many NLP tasks. Since complete linkage clustering is in

this case configured to use the cosine distance and ward clustering is only possible

with the euclidean distance, one would expect complete linkage clustering to have

an advantage over ward clustering. However, ward as a linkage criterion outweighs

the disadvantage of using the euclidean distance.

The proposed label score clearly improves the results. However, the full label score

(W2V+SPKm+Hyp+Incl) and the configuration without the hyponym classifica-

tion score (W2V+SPKm+Incl) perform equally good. Thus, the inclusion score

is probably the deciding factor, not the hyponym classification score. For further

analysis it would be interesting to test the hyponym classifier as a binary classifier

in isolation. A low performing hyponym classifier could be explained through false

positives in the Hearst pattern extraction which would act as noise in the training

data.

6.3 About the Evaluation of Topical Taxonomies

Evaluating a topical taxonomy comes with several difficulties, since it is not clear

what a topical gold taxonomy should look like. Two main questions emerge: (1)

What kind of relations should the topical taxonomy actually depict? (2) If the

relations are only vaguely defined, how should one decide if a relation is valid or

not?

Regarding the first question: Simple, non-topical, taxonomies only contain hyper-

nym relations. A hypernym relation can only exist between two single terms. It

cannot exist between two topics. So, the question becomes what relation is depicted

35

Chapter 6. Discussion

instead. Two possible answers come to mind: The first one consists in saying that

a parent and a child node should be in a relation where the child is a subtopic to

the parent. I assume that this is what Zhang et al. where thinking of, when they

evaluated their taxonomy. However, such a relation is vaguely defined and in dif-

ferent contexts different topics could be considered sub- or child topics of a parent

topic. For example in the context of cyber security decryption could constitute

a valid subtopic of risk, since decryption is a risk for, for example, classified

digital information. But in the context of finance or politics, decryption would

hardly qualify as a valid subtopic for risk. The second possible answer consists in

stating that a hypernym relation should hold between the cluster label of the parent

topic and the cluster label of the child topic. Additionally, each label has terms in

its topic which are closely related to it. This could be named the taxonomy-plus

view of topical taxonomies, since it views a topical taxonomy as a normal taxonomy,

where each term in the taxonomy is additionally surrounded by other closely related

terms.

Regarding the second question: If a topical taxonomy is interpreted as depicting

is-subtopic relations, it is difficult to draw a line what a valid relation is, since

the notion of a subtopic has no clear definition. One possible solution consists in

developing further criteria a relation has to meet to be counted as valid. For the

evaluation in this thesis, for the is-subtopic-topic-level-relation, I counted the

relation in question as valid if at least one of the following three questions could be

answered with yes:

1. Are some terms in the child topic in a hypernym relation with a term in the

parent topic?

2. Are some terms in the child topic in a meronym relation with a term in the

parent topic?

3. If there is a detailed discussion of the parent topic, is it highly likely that the

child topic comes up?

A positive example for question 3 would be: ”If the parent topic deep learning

comes up, is it highly likely that the child topic recursive neural network comes

up?“ A negative example for question 3 would be: ”If the parent topic deep learning

comes up, is it highly likely that the child topic support vector machine comes

up?“

Question 3. helps to cover cases which are not covered by hypernymy or meronymy,

but where the child topic still should be counted as a subtopic. To clarify this

using the example above: There is neither a hypernym nor a meronym relation

36

Chapter 6. Discussion

between deep learning and recursive neural network. But recursive neural

network still should count as a subtopic of deep learning. This is made possible

by question 3. However, there is still vagueness in this criterion as there are cases

where it is debatable if question 3 can be answered with yes. How much disagreement

there is about how these questions should be answered and if a different or expanded

set of questions would help to further make the relation boundaries clear could be

measured with an inter-annotator agreement.

6.4 Future Work

What future work should be done depends on the current limitations of TaxoGen.

Thus, this section is closely related to section 3.5, where some of the limitations of

TaxoGen are described. An obvious next step is to further investigate why the two

implementations differ in their results. But apart from that, there are several ideas

for improvements:

Lemmatization: TaxoGen does no lemmatization. Although lemmatization is not

part of the configurations evaluated in this thesis, it is already implemented and can

easily be added to the pipeline.

Number of subtopics: The number of subtopics or clusters per level in the tax-

onomy is set to 5. However, it would be much more desirable for the number of

clusters to depend on the input data points. There exist several methods, like knee

analysis, to automatically find the number of clusters which group the data points in

an optimal way. However, these methods come with a drawback of having to cluster

multiple times to compare the clustering outcomes. This, in combination with the

already iterative process of adaptive spherical clustering would make TaxoGen very

time consuming. It is an open question how finding the best number of clusters can

be made compatible with time constraints.

Threshold to push terms up: The threshold to push terms up is static; meaning

that it does not change depending on the current distribution of representativeness

scores. This can lead to empty topics, in the sense that they contain no terms. A

threshold that dynamically moves up or down based on an analysis of the current

distribution of representativeness scores could solve this problem.

37

Chapter 6. Discussion

Taxonomy coherency: Even if the terms in a taxonomy have been pushed into

the correct topics and subtopics, the taxonomy can appear as incoherent if the

topic labels are not related to each other in the same way. For example, if most

or all relations between a parent topic and its child topics can be characterized as

hypernym relations, this would be a coherent taxonomy. However, if the relations

in a taxonomy between the labels of parent topics and child-topics are a mix of

hypernymy, meronymy and other relations which would just be characterized as

issubtopic, then this taxonomy would not be as coherent. The labeling score

introduced in section 4.3 constitutes a first step to ensure coherency, since it makes

the labeling of child topics dependent of the top scoring terms (and thus also the

label) of the parent topic. However, topic labels in this score are chosen using only

a local context by considering the parent label. In future work, this approach could

be extended to a taxonomy-wide, thus global, optimization for label coherency. The

proposed labeling score could serve as a starting point for initial labeling of the

topics. Then, global optimization could be deployed by systematically switching

out topic labels to maximize a global coherency score.

38

7 Conclusion

The goal of this thesis was to reproduce the results of TaxoGen and enhance it

with better embeddings, clustering algorithms and a new label score. I showed that

to reproduce TaxoGen’s results, techniques different from the descriptions in the

publication and additional techniques not mentioned in the publication are needed.

However, I was not able to exactly reproduce TaxoGen’s results and it is not entirely

clear where the reason lies. Testing TaxoGen with GloVe and ELMo embeddings did

not lead to an improvement, showing that Skip-Gram-based embeddings are good

enough for this purpose. However, I was not able to train local ELMo embeddings.

If this was possible, the results for TaxoGen with ELMo embeddings probably would

have been better. Testing TaxoGen with agglomerative clustering techniques showed

that although they allow better for different cluster sizes, the quality of the taxonomy

did not improve. I also proposed a label score which combines cosine similarity, a

hyponym classification score and a distributional inclusion score. This label score

significantly improved the relation precision. The improvement seems mostly due to

the inclusion score, whereas the classification score does not have the same impact.

Overall there still remains a lot of room for improvement. The topics are often noisy

and the hierarchy of topics does not seem conclusive. In the last chapter I discussed

how topical taxonomies can be evaluated in general and sketched several ideas how

TaxoGen could be improved in the future. But it is not only necessary to improve

and optimize the taxonomy generation techniques, it is also necessary to think about

what exactly a topical taxonomy should be optimized for. I think that one of those

optimization criteria is coherence. I proposed the label score as a first step into this

direction.

39

References

D. Alfarone and J. Davis. Unsupervised learning of an is-a taxonomy from a

limited domain-specific corpus. In Twenty-Fourth International Joint

Conference on Artificial Intelligence, 2015.

T. L. Anh, J.-j. Kim, and S. K. Ng. Taxonomy construction using syntactic

contextual evidence. In Proceedings of the 2014 Conference on Empirical

Methods in Natural Language Processing (EMNLP), pages 810–819, 2014.

T. L. Anh, Y. Tay, S. C. Hui, and S. K. Ng. Learning term embeddings for

taxonomic relation identification using dynamic weighting neural network. In

Proceedings of the 2016 Conference on Empirical Methods in Natural Language

Processing, pages 403–413, 2016.

Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin. A neural probabilistic

language model. Journal of machine learning research, 3(Feb):1137–1155, 2003.

G. Bernier-Colborne and C. Barriere. Crim at semeval-2018 task 9: A hybrid

approach to hypernym discovery. In Proceedings of The 12th International

Workshop on Semantic Evaluation, pages 725–731, 2018.

G. Bordea, P. Buitelaar, S. Faralli, and R. Navigli. Semeval-2015 task 17:

Taxonomy extraction evaluation (texeval). In Proceedings of the 9th

International Workshop on Semantic Evaluation. Association for Computational

Linguistics, 2015.

P. Buitelaar, P. Cimiano, and B. Magnini. Ontology learning from text: methods,

evaluation and applications, volume 123. IOS press, 2005.

H.-Y. Chen, C.-S. Lee, K.-T. Liao, et al. Word relation autoencoder for unseen

hypernym extraction using word embeddings. In Proceedings of the 2018

Conference on Empirical Methods in Natural Language Processing, pages

4834–4839, 2018.

R. L. de Mantaras and L. Saitia. Comparing conceptual, divisive and

agglomerative clustering for learning taxonomies from text. In 16th European

40

Chapter 7. Conclusion

Conference on Artificial Intelligence Conference Proceedings, volume 110, page

435, 2004.

I. S. Dhillon and D. S. Modha. Concept decompositions for large sparse text data

using clustering. Machine learning, 42(1-2):143–175, 2001.

T. Fountain and M. Lapata. Taxonomy induction using hierarchical random

graphs. In Proceedings of the 2012 Conference of the North American Chapter of

the Association for Computational Linguistics: Human Language Technologies,

pages 466–476. Association for Computational Linguistics, 2012.

R. Fu, J. Guo, B. Qin, W. Che, H. Wang, and T. Liu. Learning semantic

hierarchies via word embeddings. In Proceedings of the 52nd Annual Meeting of

the Association for Computational Linguistics (Volume 1: Long Papers),

volume 1, pages 1199–1209, 2014.

M. Geffet and I. Dagan. The distributional inclusion hypotheses and lexical

entailment. In Proceedings of the 43rd Annual Meeting on Association for

Computational Linguistics, pages 107–114. Association for Computational

Linguistics, 2005.

G. Grefenstette. Inriasac: Simple hypernym extraction methods. arXiv preprint

arXiv:1502.01271, 2015.

J. A. Hartigan and M. A. Wong. Algorithm as 136: A k-means clustering

algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics),

28(1):100–108, 1979.

M. A. Hearst. Automatic acquisition of hyponyms from large text corpora. In

Proceedings of the 14th conference on Computational linguistics-Volume 2, pages

539–545. Association for Computational Linguistics, 1992.

G. Kruszewski, D. Paperno, and M. Baroni. Deriving boolean structures from

distributional vectors. Transactions of the Association for Computational

Linguistics, 3:375–388, 2015.

R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. On semi-automated

web taxonomy construction. In WebDB, pages 91–96, 2001.

O. Levy, S. Remus, C. Biemann, and I. Dagan. Do supervised distributional

methods really learn lexical inference relations? In Proceedings of the 2015

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, pages 970–976, 2015.

41

Chapter 7. Conclusion

X. Liu, Y. Song, S. Liu, and H. Wang. Automatic taxonomy construction from

keywords. In Proceedings of the 18th ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 1433–1441. ACM, 2012.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

R. Navigli and P. Velardi. Learning word-class lattices for definition and hypernym

extraction. In Proceedings of the 48th Annual Meeting of the Association for

Computational Linguistics, pages 1318–1327. Association for Computational

Linguistics, 2010.

J. Pennington, R. Socher, and C. Manning. Glove: Global vectors for word

representation. In Proceedings of the 2014 conference on empirical methods in

natural language processing (EMNLP), pages 1532–1543, 2014.

M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and

L. Zettlemoyer. Deep contextualized word representations. arXiv preprint

arXiv:1802.05365, 2018.

J. Platt et al. Probabilistic outputs for support vector machines and comparisons

to regularized likelihood methods. Advances in large margin classifiers, 10(3):

61–74, 1999.

S. E. Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu, M. Gatford, et al.

Okapi at trec-3. Nist Special Publication Sp, 109:109, 1995.

R. Snow, D. Jurafsky, and A. Y. Ng. Learning syntactic patterns for automatic

hypernym discovery. In Advances in neural information processing systems,

pages 1297–1304, 2005.

D. Ustalov, N. Arefyev, C. Biemann, and A. Panchenko. Negative sampling

improves hypernymy extraction based on projection learning. arXiv preprint

arXiv:1707.03903, 2017.

W. L. Woon and S. Madnick. Asymmetric information distances for automated

taxonomy construction. Knowledge and information systems, 21(1):91–111, 2009.

J. Yamane, T. Takatani, H. Yamada, M. Miwa, and Y. Sasaki. Distributional

hypernym generation by jointly learning clusters and projections. In Proceedings

of COLING 2016, the 26th International Conference on Computational

Linguistics: Technical Papers, pages 1871–1879, 2016.

42

Chapter 7. Conclusion

H. Yang and J. Callan. A metric-based framework for automatic taxonomy

induction. In Proceedings of the Joint Conference of the 47th Annual Meeting of

the ACL and the 4th International Joint Conference on Natural Language

Processing of the AFNLP: Volume 1-Volume 1, pages 271–279. Association for

Computational Linguistics, 2009.

Z. Yu, H. Wang, X. Lin, and M. Wang. Learning term embeddings for hypernymy

identification. In Twenty-Fourth International Joint Conference on Artificial

Intelligence, 2015.

C. Zhang, F. Tao, X. Chen, J. Shen, M. Jiang, B. Sadler, M. Vanni, and J. Han.

Taxogen: Unsupervised topic taxonomy construction by adaptive term

embedding and clustering. In Proceedings of the 24th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, pages

2701–2709. ACM, 2018.

43

	Abstract
	Acknowledgement
	List of Acronyms
	Introduction
	Theoretical background and related work
	Pattern-based Hypernym Extraction
	Embedding-based Hypernym Extraction
	Taxonomy Construction

	TaxoGen
	Adaptive Spherical Clustering
	Representativeness Score
	Local Embeddings
	TaxoGen Implementation
	Summary and Limits

	Methods - Building on TaxoGen
	Embeddings
	GloVe Embeddings
	ELMo Embeddings
	Why Test these Embeddings

	Clustering
	Label Score
	Distributional Inclusion Score
	Hyponym Classification Score

	Experiments and Results
	Dataset
	Implementation
	Evaluation
	General Procedure
	Metrics
	Evaluation Results

	Discussion
	Comparison with the TaxoGen Results
	Comparison between Different Versions
	About the Evaluation of Topical Taxonomies
	Future Work

	Conclusion
	References

